Технология прокатки. Технологический процесс прокатки. Схема прокатного стана. Прокатная клеть. Современные технологии производства проката и формирование структуры и свойств Традиционные и современные технологии получения проката

Исходным материалом для производства проката служат слитки, отлитые в изложницы - для обжимо-заготовочных станов, а для станов готового проката – блюмы, слябы и заготовки, катаные и непрерывнолитые.

При использовании слитков технологическая схема прокатки предусматривает следующие операции: нагрев слитков, прокатка на блюминге или слябинге, обрезка концов раската и порезка его на мерные длины. Далее слябы и крупные блюмы направляют на станы готового проката, а часть блюмов поступает на непрерывно-заготовочные станы (НЗС), где из них получают заготовки меньших размеров для мелкосортных и проволочных станов.

При использовании непрерывнолитых заготовок (блюмов, слябов), они после нагрева или подогрева поступают непосредственно на станы готового проката, минуя обжимо-заготовочные операции.

Слитки отливают из сталей, которые подразделяют по ряду признаков: по химическому составу, по способу производства, по структуре, по назначению, по степени раскисления. Среди них наибольший удельный вес по массе занимают углеродистые стали обыкновенного качества (ГОСТ 380), стали углеродистые качественные (ГОСТ 1050) и стали низколегированные конструкционные (ГОСТ 5058).

Подготовка исходных материалов к прокатке заключается в удалении поверхностных дефектов и нагреве. Удаление поверхностных дефектов – плен, трещин, неметаллических включений и пр., весьма трудоемкая операция. В старых цехах на ней занято до 70% рабочих. Выполняют ее лезвийным инструментом, зачисткой абразивными кругами, огневой зачисткой, станочной обдиркой и пр.

Нагрев металла перед прокаткой осуществляют в нагревательных колодцах, методических печах и печах с выкатным подом. Основная цель нагрева металла – повысить его пластичность и снизить сопротивление деформации. Однако нагрев может иметь и нежелательные последствия – окалинообразование, обезуглероживание поверхностных слоев, перегрев и пережог металла. И если последних трех можно избежать, соблюдая определенные режимы, то в обычных условиях окалинообразование является неизбежным и приводит к потере 1-2 % металла и более, а также ухудшению качества поверхности.

Температура нагрева металла определяется температурным режимом прокатки – температурой начала (t н) и конца прокатки (t к). Обычно температуру t н принимают на 150-200 0 С ниже линии солидуса диаграммы состояния железоуглеродистых сплавов с таким расчетом, чтобы температура t к лежала в области однофазного гамма-железа, т.е. в области температур выше линии превращения. Обычно для мало- и среднеуглеродистых сталей t н = 1250…1280 0 С, для высокоуглеродистых t н = 1050…1150 0 С, а t к 950…1050 0 С.

В последние годы с целью экономии энергетических и материальных ресурсов, повышения качества проката переходят на низкотемпературный нагрев и прокатку.


9.1 Технология производства полупродукта.

К полупродуктам относят блюмы со стороной сечения 240…350 мм, заготовки 50…240 мм, слябы толщиной до 350 мм и шириной до 2500 мм. Полупродукты производят на блюмигах, слябингах и заготовочных станах. Наиболее распространены одноклетьевые блюминги. По диаметру валков их подразделяют на малые (Æ 850…1000 мм), средние (Æ 1050…1170 мм) и большие (Æ 1200…1500 мм).

На блюминге можно прокатывать и блюмы, и слябы, а на слябинге – только слябы.

Малые блюминги используют в основном в качестве обжимных клетей заготовочных и рельсобалочных станов.

На рис. 9.1. представлена схема блюминга 1300. Он расположен в четырех пролетах – печном (I), становом или главном (II), машинном (III), скрапном (IV) и адъюстажном (V). Слитки из стрипперного отделения сталеплавильного цеха поступают на железнодорожных платформах в печной пролет, слитки кипящей стали в раздетом состоянии, а спокойной – в изложницах в подорванном от литников состоянии и без прибыльных надставок.

Мостовым клещевым краном слитки сажают в нагревательные колодцы (1) - регенеративного или рекуперативного типов. В силу ряда недостатков, присущих регенеративным колодцам (прямой контакт факела со слитком, неравномерный нагрев, отсутствие представительной точки для контроля температуры в ячейке и пр.), чаще используют колодцы рекуперативного типа.

До 90% слитков сажают в колодцы в горячем состоянии, что примерно вдвое сокращает время нагрева слитков и соответственно расход топлива и потери металла в окалину.

В зависимости от температуры различают слитки горячего посада, теплого посада и холодного посада с температурой соответственно выше 800 0 С, от 400 до 800 0 С и ниже 400 0 С.

Из колодцев нагретые слитки клещевым краном укладывают на слитковоз – челночного или кольцевого типа (3). Челночные имеют ограниченную пропускную способность и являются узким местом в технологической цепочке, особенно при подаче слитков от дальнейших ячеек. Поэтому более предпочтительны кольцевые слитковозы. На кольце располагают до 3…4 тележек, перемещающихся со скоростью до 6 м/сек.

Боковым сталкивателем (2) со слитковоза слитки сталкивают на поворотный стол, далее на приемный рольганг и по нему передают в становый пролет к блюмингу (5), где их прокатывают на блюмы или слябы.

Главной особенностью блюминга является возможность подъема верхнего валка между проходами на высоту до 1500 мм и реверса валков, что обеспечивает прокатку слитков в прямом и обратном направлениях до получения раскатов заданных размеров. Для калибровки валков блюминга используют систему ящичных калибров с последовательным или симметричным расположением калибров (рис. 9.2 -а, б).

Сила прокатки на блюминге достигает 18 МН, момент прокатки – до 5 МНм. Привод валков осуществляется от одного двигателя через шестеренную клеть или индивидуально на каждый валок. Суммарная мощность двигателей до 12 тыс. квт.

Передача раската из калибра в калибр вдоль оси валков осуществляется манипуляторами. В линейке переднего манипулятора со стороны привода вмонтирован крюковой кантователь. За блюмингом расположены машина огневой зачистки (7) и далее – ножницы (8). На машине огневой зачистки (МОЗ) удаляют поверхностные дефекты. В зависимости от площади и глубины зачистки потери металла составляют до 3 %.

На ножницах удаляют передний и задний концы раската и режут его на мерные длины. Здесь же на передний торец каждого блюма и сляба клеймом наносят паспортные данные слитка. Головную и донную обрезь из под ножниц наклонным транспортером (9) передают в скрапной пролет на железнодорожные платформы.

Ножницы кривошипно-шатунные, обеспечивают усилие резания до 16 МН и число резов до 12 в мин.

От ножниц часть блюмов по рольгангу (10) направляют на непрерывно-заготовочный стан (НЗС), а другая часть и слябы по транспортеру (11) – на адъюстаж для охлаждения и ремонта.

Производительность блюминга 1150 составляет 3…4 млн. т/год, а блюминга 1300 - до 6 млн. т/год (по всаду).

Слябинги по составу и расположению оборудования во многом аналогичны блюмингам. Главным отличием слябинга является наличие кроме горизонтальных валков пары вертикальных, расположенных перед или за клетью. Кроме того валки слябинга не калиброванные, а гладкие.

Прокатывать на блюминге заготовки небольшого сечения экономически нецелесообразно. Поэтому обычно за блюмингом располагают НЗС, на котором из блюмов без подогрева прокатывают заготовки. На рис. 9.3 представлена схема НЗС 900/700/500. Стан состоит из трех групп и обеспечивает получение квадратных заготовок со стороной сечения 240, 190 и 150 мм из второй группы и 120, 100 и 80 мм – из третьей.

По подводящему рольгангу (1) блюмы поступают на поворотное устройство для направления раската здоровым концом вперед, а от него – в первую группу из двух клетей (3) с валками диаметром 900 мм. Вторая группа из шести клетей – две с валками диаметром 900 мм (5) и четыре – по 700 мм (6,7). Во избежание кантовки раската между клетями валки двух клетей 700 расположены вертикально (6). Перед группой установлен кантователь (4).

Из второй группы раскаты сечением 150 мм и выше шлепперами передают на обводной рольганг (8) и далее на ножницы с нижним резом усилием 10 МН.

Для получения заготовок меньшего сечения раскаты поступают в третью группу из шести клетей с диаметром валков 500 мм, три из которых с вертикальными (11) и три – с горизонтальными валками (12). Перед группой установлены маятниковые ножницы (9) для удаления переднего конца и кантователь (10).

В первых клетях обычно используют систему ящичных калибров, в последующих ромб – квадрат.

За третьей группой установлены летучие ножницы (13) усилием 1,5 МН. После порезки заготовки поступают на пакетирующий рольганг (19) и далее на холодильник (21).

Производительность НЗС обычно соответствует производительности блюминга, за которым он установлен.

Кроме НЗС для производства заготовок используют также обжимно-заготовочные станы линейного типа и с последовательным расположением клетей.

9.2 Технология производства проката на рельсобалочных станах

Сортамент рельсобалочных станов включает железнодорожные рельсы массой от 38 до 75 кг/п.м., трамвайные и подкрановые рельсы, двутавровые балки и швеллеры свыше №24, равнобокие и неравнобокие уголки, зетообразные, круглые и квадратные профили крупных размеров и пр.

В качестве примера рассмотрим технологию производства наиболее ответственного и сложного профиля – железнодорожных рельсов на стане 800.

Стан линейного типа, клети расположены в две линии (рис.7.12). В первой – обжимная дуо-реверсивная клеть 900 (малый блюминг), во второй три клети 800 – черновая и предчистовая трио и чистовая дуо с отдельным приводом. Заготовки сечением 300´340 мм нагревают в методических печах до температуры 1180-1200 0 С. В обжимной клети прокатку осуществляют в ящичных и трех-четырех тавровых калибрах, а в остальных – в пластовых калибрах (рис. 9.4).

Из чистовой клети выходит рельс длиной около 75 м с температурой на уровне 900 0 .

Дисковыми пилами раскат режут на стандартную длину 12,5 или 25 м с учетом термической усадки и припуска на механическую обработку торцов.

Для компенсации термического изгиба при охлаждении рельса на головку, его предварительно изгибают на подошву и в таком виде охлаждают на холодильнике до температуры примерно 600 0 С. Затем следует замедленное охлаждение (противофлокенная обработка) в ямах, до температуры 150…200 0 С в течении 7…8 час.

Охлажденные рельсы правят в роликоправильных машинах (РПМ) и дополнительно концы рельсов на штемпельных прессах. После этого фрезеруют торцы рельсов на стандартный размер и сверлят болтовые отверстия. Наличие дефектов в рельсах контролируют УЗК.

Далее следует термическая обработка рельсов – нормализация в проходных печах или закалка головки рельсов (нагрев ТВЧ до 1000 0 С и охлаждение водовоздушной смесью). Окончательную правку рельсов осуществляют на РПМ в положении стоя и под прессом концов рельсов в положении на боку.

Приемку рельсов проводят ОТК и инспекторы МПС. Контролируют химический состав и структуру рельсовой стали, ее прочностные и пластические свойства, ударную вязкость, излом образцов, полнопрофильных рельсов под копром и пр.

Прокатку балок, швеллеров и др. профилей осуществляют по такой же технологической схеме с некоторыми упрощениями: более широкий температурный интервал нагрева заготовки (1200…1280 0 С), отсутствует предварительный изгиб раската перед холодильником и замедленное охлаждение, меньше объем отделки и контроля качества профилей.

9.3 Прокатка крупно-, средне-, мелкосортного проката и катанки.

Крупный сорт прокатывают на современных станах с последовательным расположением клетей (рис.7.15), реже на станах линейного типа, аналогичных рельсобалочным.

Исходным материалом служат блюмы и заготовки, катанные и непрерывнолитые, квадратного сечения со стороной до 310 мм. Нагретые в методических печах с торцевой задачей и выдачей заготовки по рольгангу поступают в непрерывную группу (одну или две) из нескольких чередующихся клетей с горизонтальным и вертикальным расположением валков. Затем шлепперами раскаты передают на вторую линию, где прокатку осуществляют в обратном направлении в группе из нескольких последовательно расположенных клетей. Расстояние между соседними клетями превышает длину раскатов, и это избавляет от необходимости соблюдать условие постоянства секундных объемов металла. Поэтому на таких станах можно прокатывать профили сложной формы.

После второй линии раскаты шлепперами передают в третью линию, откуда из чистовой клети - к пилам горячей резки и далее на холодильник. Готовый прокат режут на пилах холодной резки на мерные длины, правят в РПМ, удаляют поверхностные дефекты и упаковывают для отправки на склад готовой продукции.

Все клети стана имеют индивидуальный привод. Каждая группа и отдельно стоящие клети оснащены кантователями.

Производительность подобных станов доходит до 2 млн. т/год.

Средний и мелкий сорт прокатывают на станах непрерывного и полунепрерывного типов с последовательным расположением клетей. Технологическая схема аналогична схеме прокатки крупного сорта.

Катанку производят на современных проволочных непрерывных станах. Нагретые заготовки перед станом сваривают торцами в бесконечную плеть. В непрерывной черновой группе (одной или двух) прокатку ведут в четыре нитки. Затем поток раздваивается на две промежуточные непрерывные группы клетей (по две нитки на каждую), а после них снова раздваивается на четыре нитки, которые прокатывают в блоках чистовых клетей – двух- или трехвалковых.

Для обеспечения равномерного охлаждения катанки ее на выходе из чистовых блоков интенсивно охлаждают и витками укладывают на движущийся транспортер с регулируемым охлаждением, после которого укладывают в бунты массой до 2 т. Затем бунты уплотняют, обвязывают и отправляют на склад готовой продукции.

Клети черновых групп могут иметь общий или индивидуальный привод, как и блоки чистовых клетей. Скорость прокатки на таких станах достигает 120 м/сек, производительность – до 1 млн. т/год.

В черновых группах установлены аварийные летучие ножницы, а после чистовых блоков – для порезки на заданную массу бунта.

9.4 Технология производства листов

9.4.1 Производство горячекатаных листов и полос. Толстые листы прокатывают на специализированных толстолистовых станах (ТЛС) и широкополосных станах горячей прокатки (ШСГП). На ТЛС полистно катают листы толщиной от 5 до 160 мм и более, на ШСГП – полосы толщиной до 20 мм с последующей порезкой на листы.

Используют преимущественно ТЛС двух- и трехклетевые с последовательным расположением клетей, например, стан 3600 МК «Азовсталь». В качестве заготовки применяют непрерывнолитые и катаные слябы толщиной до 350 мм массой до 16т, а для особо толстых листов и плит – слитки массой до 30 т и более. Слябы нагревают в методических печах, а слитки – в нагревательных колодцах или печах с выдвижным подом.

Первую клеть с вертикальным или горизонтальным расположением валков используют в качестве окалиноломателя. Вторая клеть – черновая дуо или кварто, чаще универсального типа, в которой производят разбивку ширины и обжатие сляба по толщине.

После второй клети особо толстые листы и плиты передаточной тележкой направляют в отделение термической обработки и отделки. Для получения листов меньшей толщины раскаты докатывают в чистовой клети кварто, на которую приходится примерно 25% обжатия от общего.

Удаление окалины с поверхности листов на всех клетях осуществляют с помощью гидросбивов с давлением воды до 17 МПа. С передней и задней стороны клети оборудованы манипуляторами, а для разворота слябов - рольгангами с коническими роликами.

Из чистовой клети раскаты поступают в роликозакалочную машину и далее на охлаждение и отделку. Их режут на листы заданных размеров, которые правят в РПМ, подвергают ультразвуковому, визуальному и другим видам контроля. Для повышения служебных свойств листы подвергают термической обработке (нормализации, закалке и пр.).

Производительность ТЛС составляет более 1 млн. т/год.

Горячекатаные полосы, в том числе толстые, прокатывают на непрерывных или полунепрерывных ШСГП. На них производят до 90% листовой стали, благодаря их более высокой производительности и высоких технико-экономических показателей по сравнению с ТЛС.

На ШСГП в качестве заготовок используют слябы, которые нагревают в методических печах (1, рис.9.5). Нагретые слябы по рольгангу (2) поступают в черновой окалиноломатель (3) с горизонтальным или вертикальным расположением валков и далее в уширительную клеть (4), после которой иногда устанавливают пресс (5) для обжатия сляба по ширине.

После этого слябы поступают в черновую группу последовательно расположенных клетей (6, 7, 8), как правило, кварто универсального типа, и далее – в чистовую непрерывную группу клетей – кварто (11…16). Перед ней установлены летучие ножницы для обрезки переднего конца (9) и чистовой окалиноломатель (10). Удаление окалины с поверхности раскатов осуществляют с помощью гидросбивов.

После чистовой группы клетей полосы интенсивно охлаждают в душирующих устройствах и сматывают на моталках в рулон.

Порезку полосы на листы заданных размеров осуществляют на агрегатах продольной и поперечной резки. Часть полос в рулонах поступает в цехи холодной прокатки (ЦХП).

Полунепрерывные ШСГП представляют собой комбинацию из ТЛС в качестве черновой группы и непрерывной чистовой группы клетей. Из черновой группы выдают толстые листы, а из чистовой – толстые и тонкие полосы, смотанные в рулон.

9.4.2 Производство холоднокатаной листовой стали. На ШСГП производят полосы толщиной 0,8 мм и более. Между тем для многих изделий требуется листы меньших толщин. Кроме того, горячекатаные листы имеют поверхность, непригодную для изготовления лицевых деталей изделий. Поэтому рулоны горячекатаных полос направляют в ЦХП для дальнейшей прокатки.

Технологией предусмотрены следующие операции: травление, прокатка, очистка поверхности, отжиг, дрессировка, отделка.

Травление полос осуществляют с целью удаления с их поверхности прокатной окалины. Для этого используют непрерывные травильные агрегаты (НТА) с серной или соляной кислотами (рис. 9.6) Полосу из разматывателя (1) с помощью тянущих роликов (2) задают в РПМ (3). На гильотинных ножницах (4) обрезают задний конец предыдущей полосы и передний конец следующей и сваривают их в непрерывную ленту на стыкосварочной машине (5). Место стыка зачищают на гратоснимателе (6). Эти операции выполняют на неподвижной ленте. Чтобы обеспечить непрерывность процесса травления, предусмотрен петленакопитель (8), из которого полоса непрерывно поступает в травильные ванны (10).

В промывочной ванне (11) с поверхности полос смывают остатки кислотных растворов и сушат в камере (13). На дисковых ножницах (14) обрезают боковые кромки полос, далее на ножницах поперечной резки (15) удаляют места их стыковой сварки и вновь сматывают в рулоны на моталке (16).

Холодную прокатку полос осуществляют на одноклетьевых (четырех- или многовалковых) станах в режиме реверсивной прокатки за несколько проходов или на многоклетьевых станах с рулона в рулон. В процессе прокатки на валки интенсивно подают смазочно-охлаждающую жидкость (СОЖ) – смесь эмульсола с водой.

На многоклетьевых станах прокатывают жесть и тонкие полосы толщиной от 0,14 мм, а на одноклетьевых многовалковых станах – тончайшую ленту толщиной до 0,002 мм.

Для снятия наклепа металл подвергают отжигу в колпаковых печах (рулонами) или в агрегатах напрерывного отжига (полосой) при температуре около 900 0 С. Предварительно в агрегатах электролитической очистки с поверхности полос удаляют остатки эмульсии и различные загрязнения.

Для повышения штампуемости листы подвергают дрессировке путем прокатки с небольшим обжатием - 1…2%.

В процессе отделки полосы режут на листы заданных размеров на агрегатах продольной и поперечной резки, правят, наносят защитные и/или декоративные покрытия и пр.

Кроме порулонного способа в последние годы в ЦХП начали внедрять принципы бесконечной прокатки и отделки в непрерывных агрегатах травления, прокатки, очистки поверхности, отжига и дрессировки.

ТРАДИЦИОННАЯ ТЕХНОЛОГИЯ

ВЫПЛАВКА

КРИСТАЛЛИЗАЦИЯ /СЛИТКА в МЕТАЛЛИЧЕСКОЙ ФОРМЕ

ПРОКАТКА СЛИТКА

Различные способы получения проката из нержавеющей стали.

НОВАЯ ТЕХНОЛОГИЯ

ВЫПЛАВКА

ПОЛУЧЕНИЕ ГРАНУЛ

ПРЕССОВАНИЕ

СПЕКАНИЕ В ПЕЧИ

ПРОКАТКА "ЗАГОТОВКИ

областях может быть достаточна для образования химических соединений.

Таким образом, границы зерен в нержавеющей стали часто представляют собой своеобразные прослойки с отличным от тела зерна химическим составом, а стало быть, и свойствами. Во многих случаях эти прослойки оказываются потенциальными источниками коррозии.

Поэтому очищение нержавеющей стали от вредных примесей - важнейший резерв повышения ее качества, продления срока службы, а следовательно, и экономии дефицитных легирующих элементов. Вот почему металлурги взяли на вооружение разнообразные средства рафинирования стали, включая глубокий вакуум, применение «чистых» источников тепла для плавления (например, плазма, электронный и лазерный лучи), продувка инертными газами и т. д.

Вот один пример, который дает представление о пользе рафинирования. Уже давно известно, что нержавеющие стали, содержащие 20-30% хрома, наделены высокой коррозионной стойкостью. Однако использование их в качестве конструкционного материала весьма ограничено из-за большой хрупкости, которую проявляют эти материалы и их сварные соединения. Хрупкость возникает из-за присутствия в стали углерода и азота, содержание которых в сумме составляет примерно 0,10-0,1б%- Металловеды установили: сиижение содержания этих примесей до уровня 0,01% ликвидирует хрупкость. Особо чистая сталь с 28% хрома может использоваться вместо хромоникеле-

вых сталей при производстве азотной кислоты, каустической соды в установках по опреснению воды и получению минеральных удобрений! Особо чистые хромистые стали по стойкости к коррозионному растрескиванию не уступают хромоникеле-вым, содержащим 30-40% дефицитного никеля.

Очистка нержавеющей стали от примесей - не единственный технологический прием, который позволяет повышать ее качества. Не меньшую роль играет и технология изготовления литой заготовки, которая потом идет на ковку или прокатку.

Оказывается, при кристаллизации жидкого металла в нем неизбежно возникают процессы ликвации, то есть разделение на объемы большей или меньшей величины, отличающиеся ДРУГ От друга по химическому составу. Это явление вполне закономерно и хорошо описывается законами кристаллизации твердых тел из жидкого состояния. Большей легированности, как правило, соответствует и большая степень ликвации. В достаточно крупном слитке разница по содержанию элементов в различных его точках может достигать 2-3%. Ликвационная неоднородность наследуется сталью и при последующем переделе, сохраняясь в изделиях. Химическая неоднородность ведет к неоднородности по свойствам, а это уже далеко не всегда допустимо.

Как же избавиться от этого дефекта, казалось бы, внутренне присущего сплавам?

И здесь на помощь пришла принципиально новая технология.

Для того чтобы произошла ликва

ция, легирующие элементы должны во время перехода стали из жидкого в твердое состояние пройти опре деленный путь. Как можно сокра тить протяженность этого пути? Очевидно, надо максимально уменьшить время кристаллизации. Этого можно достигнуть значительным уменьшением кристаллизующегося объема при высокой скорости его охлаждения. Если сократить кристаллизующий объем до размеров капли, охлаждаемой проточным инертным газом, то степень ликва ционной неоднородности будет в ней гораздо меньше, чем в крупном медленно затвердевающем слитке. Удалось установить, что ликвация практически не успевает развиться, если кристаллизация происходит в объеме гранул диаметром 20 -50 мк. На этом принципе основана развивающаяся сейчас новая техно логия изготовления высоколегированных сталей, в том числе нержавеющих.

Применение нержавеющих сталей насчитывает всего семьдесят лет, но их появление сыграло огромную роль в развитии мировой промышленности XX века. Ведь без них были бы невозможны те колоссальные успехи, которые достиг нуты в атомной энергетике, в авиационной и космической технике и во многих других областях современного хозяйства. И по тому, что сейчас продолжают совершенство ваться как сами нержавеющие ста ли, так и технология их произвол ства, нетрудно предугадать: этим материалам предстоит не раз ска зать решающее слово в грядущем научно-техническом прогрессе.

Продукция проката, полученная с нагревом исходной заготовки, называется горячекатаной, без нагрева - холоднокатаной.

Технология производства основных типов проката состоит из двух этапов: прокатка слитка в полупродукт и прокатка полупродукта в готовый прокат.

1. Прокатка слитка в полупродукт

Прокатка слитка в полупродукт выполняется в горячем состоянии на специальных обжимных станах: блюмингах и слябингах (станы производства полупродукта)

Исходными заготовками при прокатке служат стальные слитки массой до 60 т, а из цветных металлов и сплавов массой до 10 т. В результате первичной прокатки слитков получаются полупродукты крупного сечения: блюмы (рис. 11Д) и слябы (рис. 12Д).

В настоящее время во всех развитых странах мира исходные заготовки квадратного и прямоугольного поперечного сечения требуемого размера получают на машинах непрерывной разливки стали. Прокатное производство блюмов и слябов осталось только в Украине и на заводах России.

2. Прокатка полупродукта в готовый прокат.

2.1. Получение листового проката (рис. 7д, а и б).

Листовой прокат делят на толстолистовой (толщиной 4–160 мм) и тонколистовой (толщиной менее 4 мм). Толстолистовой прокат получают в горячем состоянии (горячекатаные листы). Тонколистовой прокат получают из толстолистового в холодном состоянии (холоднокатаные листы).

2.2. Получение сортового проката (рис. 7д, в и рис. 8д).

На рис. 13Д показан процесс получения швеллера в результате последовательного приближения профиля исходной заготовки к форме прокатанного изделия. Прокатка ведется в горячем состоянии.

2.3. Получение труб

2.3.1. Получение бесшовных труб поперечно-винтовой прокаткой (рис. 2Д, в)

Бесшовные трубы прокатывают из отливок круглого сечения поперечно- винтовой прокаткой в горячем состоянии

  • " onclick="window.open(this.href," win2 return false >Печать
  • E-mail
Подробности Категория: Сортовой прокат

Сортовой прокат

В машиностроении, строительстве, на транспорте широко применяется металлический прокат : листы, полосы, ленты, рельсы, балки и т. д. Его получают в результате обжатия слитка металла в горячем или холодном состоянии между вращающимися валками прокатного стана. Таким образом обрабатывают сталь, цветные металлы и их сплавы.

Профиль проката (форма его поперечного сечения ) зависит от формы валков. На рисунках показаны основные профили продукции прокатного производства, называемой сортовым прокатом.

Различают следующие профили сортового проката : простые (круг, квадрат, шестиугольник, полоса, лист ); фасонные (рельс, балка, швеллер, тавр и др.); специальные (колеса, арматурная сталь и др.).

Чаще всего сортовой прокат используется в качестве заготовок для различных деталей. Например, из шестигранного прутка делают болты, гайки. Из круглого проката вытачивают цилиндрические детали на токарных станках. Уголковый прокат применяется в производстве рам, каркасов, стеллажей и т. д.

Прокаткой можно придать заготовке форму готовой детали, тем самым избежать дополнительной обработки и, следовательно, уменьшить отходы металла, сэкономить время.

Ниже представлены несколько образцов распространённых видов проката: труба, арматура, балка, швеллер, лист, уголок, полоса и т.д.

Сортовой прокат - один из видов полуфабрикатов . Так называют продукт труда, предназначенный для дальнейшей обработки и получения готовых изделий.
С некоторыми видами полуфабрикатов вы уже знакомы - это пиломатериалы, фанера, проволока.
Листовой прокат подразделяется на тонколистовой (до 4 мм) и толстолистовой (свыше 4 мм

Виды и свойства стали

Сталь - это сплав железа с углеродом (до 2%) и другими химическими элементами. Она широко применяется в машиностроении, на транспорте, в строительстве, быту.
В зависимости от состава различают углеродистую и легированную сталь. В углеродистой стали содержится 0,4...2% углерода. Углерод придает стали твердость, но увеличивает хрупкость, снижает пластичность. При добавлении в сталь во время плавки других элементов: хрома, никеля, ванадия и др. - изменяются ее свойства. Одни элементы повышают твердость, прочность, другие - упругость, третьи придают антикоррозийность, жаропрочность и др. Стали, в которых есть эти элементы, называются легированными. В марках легированной стали добавки обозначают буквами: Н - никель , В - вольфрам , Г - марганец , Д - медь , К - кобальт , Т - титан .

По назначению различают конструкционную, инструментальную и специальные стали.
Конструкционная углеродистая сталь бывает обыкновенного качества и качественная. Первая - пластичная, но обладает невысокой прочностью. Применяется для изготовления заклепок, шайб, болтов, гаек, мягкой проволоки, гвоздей. Вторая отличается повышенной прочностью. Из нее изготавливают валы, шкивы, ходовые винты, зубчатые колеса.
Сталь инструментальная обладает большей твердостью, прочностью, чем конструкционная, и применяется для изготовления зубил, молотков, резьбонарезных инструментов, сверл, резцов.
Специальные стали - это стали с особыми свойствами: жаропрочные, износостойкие, нержавеющие и др.
Все виды сталей маркируются определенным образом. Так, конструкционная сталь обыкновенного качества обозначается буквами Ст . и порядковым номером от 0 до 7 (Ст. О , Ст. 1 и т. д.- чем выше номер стали, тем выше содержание углерода и предел прочности), качественная - двумя цифрами 05 , 08 , 10 и т. д., показывающими содержание углерода в сотых долях процента. По справочнику можно определить химический состав стали и ее свойства.
Свойства стали можно изменять с помощью теплового воздействия - термической обработки (термообработки). Она заключается в нагреве до определенной температуры, выдержке при этой температуре и последующем быстром или медленном охлаждении. Диапазон температур может быть широким в зависимости от вида термообработки и содержания углерода в стали.
Основные виды термообработки - закалка, отпуск, отжиг, нормализация .
Для повышения твердости стали применяют закалку - нагревание металла до определенной температуры (например, до 800 °С) и быстрое охлаждение в воде, масле или других жидкостях.
При значительном нагревании и быстром охлаждении сталь становится твердой и хрупкой. Хрупкость после закалки можно уменьшить с помощью отпуска - остывшую закаленную стальную деталь вновь нагревают до определенной температуры (например, 200...300°С), а затем охлаждают на воздухе.
У некоторых инструментов закаливают только их рабочую часть. При этом повышается долговечность всего инструмента.
При отжиге заготовку нагревают до определенной температуры, выдерживают при этой температуре и медленно (в этом главное отличие от закалки) охлаждают . Отожженная сталь становится мягче и поэтому лучше обрабатывается.
Нормализация - разновидность отжига, только охлаждение происходит на воздухе . Этот вид термообработки способствует повышению прочности стали.

Термическую обработку стали на промышленных предприятиях выполняют рабочие-термисты . Термист должен хорошо знать внутреннее строение металлов, их физические, технологические свойства, режимы термообработки, умело пользоваться термическими печами, строго соблюдать правила безопасности труда.

Важнейшие механические свойства стали - твердость и прочность . На твердость сталь испытывают при помощи специальных приборов-твердомеров . Метод измерения основан на вдавливании в образец более твердого материала: шарика из твердой стали, алмазного конуса или алмазной пирамиды.

Значение твердости НВ определяют делением нагрузки на площадь поверхности отпечатка, оставляемого в металле (метод Бринелля ) (рис. справа, а ),

или по глубине погружения в металл алмазного острия, стального шарика (метод Роквелла ) (рис. 6 ).

Прочность стали определяют на разрывных машинах испытанием образцов специальной формы, растягивая их в продольном направлении вплоть до разрыва (рис. слева). Определяя прочность, делят наибольшую нагрузку, которая предшествовала разрыву образца, на площадь его первоначального поперечного сечения.

Исходные заготовки для сортовых станов - блюмы - последовательно пропускают через ряд калибров. В зависимости от стадии процесса прокатки различают калибры обжимные (уменьшающие сечение заготовки), черновые (приближающие сечение заготовки к заданному профилю) и чистовые (дающие окончательный профиль). В качестве примера на рис. 7 показана система из 9 калибров для получения рельсов. После прокатки прутки разрезают на мерные заготовки и правят в холодном состоянии.

Рис. 7.

Производство листового проката.

Исходную заготовку - сляб - прокатывают (после второго нагрева) в толстый лист большей частью на станах с двумя рабочими клетями (черновой и чистовой), расположенными друг за другом. Перед черновой клетью сбивают окалину. Чистовая клеть кварто имеет рабочие валки меньшего диаметра, чем черновая. После прокатки листы правят и обрезают на заданные размеры.

Тонкие листы прокатывают в горячем и холодном состояниях. Горячую прокатку ведут на непрерывных многоклетьевых станах, имеющих 2 группы клетей (черновую и чистовую). Перед каждой группой в окалиноломателях очищают листы от окалины. Выходящий из чистовых клетей лист сматывается в рулон. Далее листы в рулонах передаются на отделочные операции (правку, разрезку и др.) или на дальнейшую холодную прокатку. С уменьшением толщины листов до определенной величины горячая прокатка сопровождается быстрым остыванием металла, растет сопротивление деформации и увеличиваются отходы металла в окалину из-за неизбежных частых подогревов. Поэтому листы тоньше 2 мм в горячем состоянии прокатывать сложно, и такие листы, как правило, получают холодной прокаткой, которая обеспечивает лучшее качество их поверхности и большую точность по толщине. Холоднокатаный лист катают из горячекатаного. Предварительно горячекатаный лист очищают от окалины травлением в кислотах и промывают. Прокатывают на непрерывных станах кварто и на многовалковых станах с применением смазки. Для снятия наклепа проводят промежуточный отжиг в печах с защитной атмосферой, после чего направляют на дальнейшую прокатку или на дрессировку (холодная прокатка с небольшим обжатием 0,5-5 % за один проход без смазки). В результате дрессировки повышается прочность, улучшается штампуемость и качество поверхности. Далее проводят отделочные операции: обрезка кромок, разрезка на мерные листы, нанесение антикоррозионных покрытий (цинк, олово, алюминий, пластмасса, лак), полирование и др.

Производство труб.

Бесшовные трубы. При прокатке бесшовных труб первой операцией является прошивка - образование отверстия в круглой заготовке. Прошивку выполняют в горячем состоянии на прошивных станах (схема поперечно-винтовой прокатки, рис. 8, двумя бочкообразными валками, оси которых расположены под углом (4-14°) друг к другу. Валки вращаются в одном и том же направлении. В результате этого заготовка 2 получает одновременно вращательное и поступательное движение. В зоне деформации заготовки преобладают радиальные растягивающие напряжения, что приводит к разрыхлению центральной части заготовки, образованию полости и облегчает прошивку отверстия оправкой 3, устанавливаемой на пути движения заготовки.

Вторую операцию - последующую прокатку полученной гильзы в трубу нужных диаметра и толщины стенки - производят на раскатных станах (схема продольной прокатки). Гильзу раскатывают между двумя валками 1 с последовательно расположенными круглыми калибрами и оправкой 2 (рис. 8). Оправку закрепляют на длинном стержне так, чтобы зазор между оправкой и калибром валка определял толщину стенки трубы. Перед прокаткой в следующем калибре трубу поворачивают на 90° . Бесшовные трубы по механическим, физическим, эксплуатационным свойствам превосходят литые и сварные, но значительно дороже.

Сварные трубы. Сварные трубы получают из плоской заготовки - ленты, называемой штрипсом , по следующей технологии: ленту сворачивают в трубу в формовочном непрерывном стане дуо с числом клетей от 5 до 12 (рис. 9).

Рис. 8.

При выходе из последней клети стана трубная заготовка поступает в электросварочный агрегат, где кромки трубы прижимаются друг к другу роликовыми электродами и свариваются. Далее трубу правят, калибруют, разрезают на мерные куски, производят другие отделочные операции. Кроме электросварки сопротивлением, применяют печную сварку, автоматическую электродуговую под флюсом, индукционную.

Рис. 9.

Рис. 10.

Проволочные станы бывают полунепрерывные и непрерывные и предназначены для прокатки проволоки-катанки диаметром 5-10 мм. Проволоку меньшего диаметра получают волочением.

Производство специальных видов проката

К специальным видам прокатки относят прокатку профилей периодического сечения, колес, шаров, колец и др. Периодические профили изготавливают, в основном, поперечной и поперечно-винтовой прокаткой. На рис. 10. показана схема стана поперечной прокатки.

Щуп 4 скользит по копировальной линейке 3, жестко связанной с кареткой 2 натяжного устройства. В зависимости от профиля копировальной линейки 3 рабочие валки 1 по мере ее движения сближаются или расходятся, изменяя соответственно диаметр прокатываемого профиля. Периодические профили применяют как фасонные заготовки для последующей штамповки и как заготовку под окончательную механическую обработку (полуоси автомобилей, ступенчатые валы и др.

На рис. 11, б дана схема стана поперечно-винтовой прокатки. Здесь валки 6 и 8 вращаются в одну и ту же сторону. Ручьи валков соответствующей формы сделаны по винтовой линии. Заготовка 5 при прокатке получает вращательное и поступательное движение; от вылета из валков она предохраняется центрирующими упорами 7. Такие станы используют для прокатки заготовок шаров и сферических роликов подшипников качения. На рис. 11 показана последовательность изготовления железнодорожного колеса.

Рис. 3.19.

Исходной заготовкой являются слитки или прокат круглого сечения. После нагрева заготовку осаживают на гидравлическом прессе и прошивают отверстие (рис. 11, а); затем на более мощном прессе формируют в штампе ступицу, диск и контур обода (рис. 11, б). Полученная заготовка поступает на колесопрокатный стан, где раскатывают диск, прилегающий к ободу, раскатывают обод и окончательно оформляют гребень на ободе колеса (рис. 11, в).

Производство гнутых профилей.

Горячей прокаткой фасонных профилей невозможно получить стенки с толщиной менее 2-3 мм. Фасонные тонкостенные профили, легкие, но жесткие, сложной конфигурации и большой длины, можно получить методом холодной гибки листового материала на специальных гибочных роликовых станах. Станы имеют 6-20 последовательно расположенных клетей непрерывного типа. В каждой паре гибочных роликов меняется форма листовой заготовки, постепенно приобретая к последней клети заданную форму (рис. 12).

Площадь сечения не меняется. Толщина заготовок из листовой стали или цветных металлов 0,3-20 мм, а максимальная ширина 600-2500 мм.

Рис. 12.

При одних и тех же прочностных свойствах гнутые профили на 25-40 % легче горячекатаных фасонных профилей, что обусловливает их широкое применение в автомобильной и авиационной промышленности, в машиностроении и строительстве (рис. 13).

Рис. 13. Основные виды гнутых профилей: а, г - профили с элементом двойной толщины; б - профили замкнутого типа; в - гофрированные профили

Прокатный стан - это совокупность привода, шестеренной клети, одной или нескольких рабочих клетей. Прокатные станы классифицируют по трем основным признакам: по числу и расположению валков; по числу и расположению рабочих клетей; по их назначению. Прокатка металла осуществляется при прохождении его между валками, вращающимися в разных направлениях. При прокатке металл обжимается, в результате чего толщина полосы уменьшается, а ее длина и ширина увеличиваются.