Предмет биоорганической химии. Биоорганическая химия (БОХ), ее значение в медицине. Отрывок, характеризующий Биоорганическая химия

, антибиотики , феромоны , сигнальные вещества , биологически активные вещества растительного происхождения, а также синтетические регуляторы биологических процессов (лекарственные препараты , пестициды и др.). Как самостоятельная наука сформировалась во второй половине XX века на стыке биохимии и органической химии и связана с практическими задачами медицины , сельского хозяйства , химической , пищевой и микробиологической промышленности.

Методы

Основной арсенал составляют методы органической химии, для решения структурно-функциональных задач привлекаются разнообразные физические, физико-химические , математические и биологические методы.

Объекты изучения

  • Биополимеры смешанного типа
  • Природные сигнальные вещества
  • Биологически активные вещества растительного происхождения
  • Синтетические регуляторы (лекарственные препараты , пестициды и т. п.).

Источники

  • Овчинников Ю. А. . - М .: Просвещение, 1987. - 815 с.
  • Бендер М., Бергерон Р., Комияма М.
  • Дюга Г., Пенни К. Биоорганическая химия. - М.: Мир, 1983.
  • Тюкавкина Н. А., Бауков Ю. И.

См. также

Напишите отзыв о статье "Биоорганическая химия"

Отрывок, характеризующий Биоорганическая химия

– Ma chere, il y a un temps pour tout, [Милая, на все есть время,] – сказала графиня, притворяясь строгою. – Ты ее все балуешь, Elie, – прибавила она мужу.
– Bonjour, ma chere, je vous felicite, [Здравствуйте, моя милая, поздравляю вас,] – сказала гостья. – Quelle delicuse enfant! [Какое прелестное дитя!] – прибавила она, обращаясь к матери.
Черноглазая, с большим ртом, некрасивая, но живая девочка, с своими детскими открытыми плечиками, которые, сжимаясь, двигались в своем корсаже от быстрого бега, с своими сбившимися назад черными кудрями, тоненькими оголенными руками и маленькими ножками в кружевных панталончиках и открытых башмачках, была в том милом возрасте, когда девочка уже не ребенок, а ребенок еще не девушка. Вывернувшись от отца, она подбежала к матери и, не обращая никакого внимания на ее строгое замечание, спрятала свое раскрасневшееся лицо в кружевах материной мантильи и засмеялась. Она смеялась чему то, толкуя отрывисто про куклу, которую вынула из под юбочки.
– Видите?… Кукла… Мими… Видите.
И Наташа не могла больше говорить (ей всё смешно казалось). Она упала на мать и расхохоталась так громко и звонко, что все, даже чопорная гостья, против воли засмеялись.
– Ну, поди, поди с своим уродом! – сказала мать, притворно сердито отталкивая дочь. – Это моя меньшая, – обратилась она к гостье.
Наташа, оторвав на минуту лицо от кружевной косынки матери, взглянула на нее снизу сквозь слезы смеха и опять спрятала лицо.
Гостья, принужденная любоваться семейною сценой, сочла нужным принять в ней какое нибудь участие.
– Скажите, моя милая, – сказала она, обращаясь к Наташе, – как же вам приходится эта Мими? Дочь, верно?
Наташе не понравился тон снисхождения до детского разговора, с которым гостья обратилась к ней. Она ничего не ответила и серьезно посмотрела на гостью.
Между тем всё это молодое поколение: Борис – офицер, сын княгини Анны Михайловны, Николай – студент, старший сын графа, Соня – пятнадцатилетняя племянница графа, и маленький Петруша – меньшой сын, все разместились в гостиной и, видимо, старались удержать в границах приличия оживление и веселость, которыми еще дышала каждая их черта. Видно было, что там, в задних комнатах, откуда они все так стремительно прибежали, у них были разговоры веселее, чем здесь о городских сплетнях, погоде и comtesse Apraksine. [о графине Апраксиной.] Изредка они взглядывали друг на друга и едва удерживались от смеха.

Биоорганическая химия – наука, изучающая строение и свойства веществ, участвующих в процессах жизнедеятельности, в непосредственной связи с познанием их биологических функций.

Биоорганическая химия наука изучающая строение и реакционную способность биологически значимых соединений. Предметом биоорганической химии являются биополимеры и биорегуляторы и их структурные элементы.

К биополимерам относятся белки, полисахариды (углеводы) и нуклеиновые кислоты. В эту группу также включают липиды, которые не являются ВМС, но в организме обычно связаны с другими биополимерами.

Биорегуляторы – это соединения, которые химически регулируют обмен веществ. К ним относятся витамины, гормоны, многие синтетические соединения, в том числе лекарственные вещества.

Биоорганическая химия базируется на идеях и методах органической химии.

Без знания общих закономерностей органической химии, сложно изучение биоорганической химии. Биоорганическая химия тесно связана с биологией, биологической химией, медицинской физикой.

Совокупность реакций, протекающих в условиях организма, называется метаболизмом.

Вещества, образующиеся в процессе метаболизма, называются – метаболитами.

Метаболизм имеет два направления:

Катаболизм – реакции распада сложных молекул на более простые.

Анаболизм - это процесс синтеза сложных молекул из более простых веществ с затратой энергии.

Термин биосинтез применяется по отношению к химической реакции IN VIVO (в организме), IN VITRO (вне организма)

Существуют антиметаболиты - конкуренты метаболитов в биохимических реакциях.

Сопряжение, как фактор повышения стабильности молекул. Взаимное влияние атомов в молекулах органических соединений и способы ее передачи

План лекции:

Сопряжение и его виды:

p, p - сопряжение,

r,p - сопряжение.

Энергия сопряжения.

Сопряженные системы с открытой цепью.

Витамин А, каротины.

Сопряжение в радикалах и ионах.

Сопряженные системы с замкнутой цепью. Ароматичность, критерии ароматичности, гетероциклические ароматические соединения.

Ковалентная связь: неполярная и полярная.

Индуктивный и мезомерный эффекты. ЭА и ЭД – заместители.

Основным типом химических связей в органической химии являются ковалентные связи. В органических молекулах атомы соединены s и p - связями.

Атомы в молекулах органических соединениях соединены ковалентными связями, которые называются s и p - связями.

Одинарная s - связь в SP 3 – гибридизованном состоянии характеризуется l – длиной (С-С 0,154 нм) Е-энергией (83 ккал/моль), полярностью и поляризуемостью. Например:

Двойная связь характерна ненасыщенным соединениям, в которых, кроме центровой s - связи, есть еще перекрывание перпендикулярное s - связи которая называется π-связью).

Двойные связи бывают локализованными, то есть электронная плотность охватывает только 2 ядра связываемых атомов.

Чаще всего мы с вами будем иметь дело с сопряженными системами. Если же двойные связи чередуются с одинарными связями (а в общем случае у атома соединенного с двойной связью, есть р-орбиталь, то р-орбитали соседних атомов могут перекрываться друг с другом, образуя общую p - электронную систему). Такие системы называются сопряженными или делокализованными . Например: бутадиен-1,3

p, p - сопряженные системы

Все атомы в бутадиене находятся в SP 2 – гибридизированном состоянии и лежат в одной плоскости (Рz – не гибрид орбитали). Рz – орбитали параллельны друг другу. Это создает условия их взаимного перекрывания. Перекрывание Рz орбитали происходит между С-1 и С-2 и С-3 и С-4, а также между С-2 и С-3, то есть возникает делокализованная ковалентная связь. Это находит отражение в изменении длин связей в молекуле. Длина связи между С-1 и С-2 увеличена, а между С-2 и С-3 укорочена, по сравнению с одинарной связью.

l-C -С, 154 нм l С=С 0,134 нм

l С-N 1,147 нм l С =O 0,121 нм

r, p - сопряжение

Примером р, π сопряженной системы может служить пептидная связь.

r, p - сопряженные системы

Двойная связь С=0 удлиняется до 0,124 нм против обычной длины 0,121, а связь С – N становится короче и становится равной 0,132 нм по сравнению с 0,147 нм в обычном случае. То есть процесс делокализации электронов приводит к выравниванию длин связей и снижению внутренней энергии молекулы. Однако ρ,p – сопряжение возникает в ациклических соединениях, не только когда чередуется = связи с одинарными С- С связями,а еще при чередовании с гетероатомом:

Рядом с двойной связью может находиться атом Х, имеющий свободную р- орбиталь. Чаще всего это гетероатомы О,N, S и их р-орбитали, взаимодействуют с p - связями, образуя р, p - сопряжение.

Например:

СН 2 = СН – О – СН = СН 2

Сопряжение может осуществляться не только в нейтральных молекулах, но и в радикалах и ионах:

Исходя из выше изложенного, в открытых системах сопряжение возникает при следующих условиях:

Все атомы, участвующие в сопряженной системе, находятся в SP 2 – гибридизованном состоянии.

Рz – орбитали всех атомов перпендикулярны плоскости s - скелета, то есть параллельны друг другу.

При образовании сопряженной многоцентровой системы происходит выравнивание длин связей. Здесь нет «чистых» одинарных и двойных связей.

Делокализация p-электронов в сопряженной системе сопровождается выделением энергии. Система переходит на более низкий энергетический уровень, становится более устойчивой, более стабильной. Так, образование сопряженной системы в случае бутадиена – 1,3 приводит к выбросу энергии в количестве 15 кДж/моль. Именно за счет сопряжения повышается устойчивость радикалов ионов аллильного типа и их распространенность в природе.

Чем длиннее цепь сопряжения, тем больше выброс энергии ее образования.

Это явление довольно широко распространено в биологически важных соединениях. Например:


С вопросами термодинамической устойчивости молекул, ионов, радикалов мы будем постоянно встречаться в курсе биоорганической химии, к которым относятся ряд ионов и молекул широко распространенных в природе. Например:

Сопряженные системы с замкнутой цепью

Ароматичность. В циклических молекулах при определенных условиях может возникать сопряженная система. Примером p, p - сопряженной системы является бензол, где p - электронное облако охватывает атомы углерода, такая система называется – ароматической.

Выигрыш энергии за счет сопряжения в бензоле составляет 150,6 кДж/моль. Поэтому бензол устойчив термически до температуры 900 о С.

Наличие замкнутого электронного кольца доказано с помощью ЯМР. Если молекулу бензола поместить во внешнее магнитное поле, возникает индуктивный кольцевой ток.

Таким образом, критерием ароматичности, сформулированным Хюккелем является:

молекула имеет циклическое строение;

все атомы находятся в SP 2 – гибридизованном состоянии;

существует делокализиванная p - электронная система, содержащая 4n + 2 электронов, где n – число циклов.

Например:

Особое место в биоорганической химии занимает вопрос ароматичности гетероциклических соединений .

В циклических молекулах, содержащих гетероатомы (азот, сера, кислород) единое p - электронное облако, образуется с участием р – орбиталей атомов углерода и гетероатома.

Пятичленные гетероциклические соединения

Ароматическая система образуется при взаимодействии 4-х р-орбиталей С и одной орбитали гетероатома, на котором находится 2 электрона. Шесть p - электронов образуют ароматический скелет. Такая сопряженная система является электронно избыточной. В пирроле атом N находится в SP 2 гибридизированном состоянии.

Пиррол входит в состав многих биологически важных веществ. Четыре пиррольных кольца образуют порфин – ароматическую систему с 26 p - электронами и высокой энергией сопряжения (840 кДж/моль)

Порфиновая структура входит в состав гемоглобина и хлорофилла

Шестичленные гетероциклические соединения

Ароматическая система в молекулах этих соединений образуется при взаимодействии пяти р-орбиталей атомов углерода и одной р-орбитали атома азота. Два электрона на двух SP 2 – орбитали участвует в образовании s - связей с атомами углерода кольца. Р-орбиталь с одним электроном входит в ароматический скелет. SP 2 – орбиталь с неподеленной парой электронов лежит в плоскости s - скелета.

Электронная плотность в пиримидине смещена к N, то есть система обеднена p - электронами, она электронно дефицитна.

Многие гетероциклические соединения могут содержать один и более гетероатомов

Ядра пиррола, пиримидина, пурина входят в состав многих биологически активных молекул.

Взаимное влияние атомов в молекулах органических соединений и способы его передачи

Как уже отмечалось, связи в молекулах органических соединений осуществляются за счет s и p связей, электронная плотность равномерно распределена между связанными атомами только тогда, когда эти атомы одинаковы или близки по электроотрицательности. Такие связи называются неполярными.

CH 3 -CH 2 →CI полярная связь

Чаще в органической химии имеем дело с полярными связями.

Если электронная плотность смешена в сторону более электроотрицательного атома, то такая связь называется – полярной. Основываясь на значениях энергии связей, американский химик Л.Полинг предложил количественную характеристику электроотрицательности атомов. Ниже представлена шкала Полинга.

Na Li H S C J Br Cl N O F

0,9 1,0 2,1 2,52,5 2,5 2,8 3,0 3,0 3,5 4,0

Атомы углерода в разном состоянии гибридизации различаются по электроотрицательности. Поэтому s - связь между SP 3 и SP 2 гибридизованными атомами - полярна

Индуктивный эффект

Передача электронной плотности по механизму электростатической индукции по цепи s - связей называется индукцией , эффект называется индуктивным и обозначается J. Действие J, как правило, затухает через три связи, однако близко расположенные атомы испытывают довольно сильное влияние находящегося рядом диполя.

Заместители, смещающие электронную плотность по цепи s - связей в свою сторону, проявляют -J – эффект, а наоборот +J эффект.

Изолированная p - связь, а также единое p - электронное облако открытой или замкнутой сопряженной системы способна легко поляризоваться под влиянием ЭА и ЭД заместителей. В этих случаях индуктивный эффект передается на p - связь, поэтому обозначает Jp.

Мезомерный эффект (эффект сопряжения)

Перераспределение электронной плотности в сопряженной системе под влиянием заместителя, являющегося участником этой сопряженной системы, называется мезомерным эффектом (М-эффект).

Для того, чтобы заместитель сам входил в сопряженную систему, он должен иметь либо двойную связь (p,p -сопряжение), либо гетероатомом с неподеленной парой электронов (r,p - сопряжение). М – эффект передается по сопряженной системе без затухания.

Заместители, понижающие электронную плотность в сопряженной системе (смещенная электронная плотность в свою сторону) проявляют -М-эффект,а заместители, повышающие электронную плотность в сопряженной системе проявляют+М-эффект.

Электронные эффекты заместителей

Реакционная способность органических веществ в значительной степени зависит от характера действия J и M эффектов. Знание теоретических возможностей действия электронных эффектов позволяет предсказать ход тех или иных химических процессов.

Кислотно-основные свойства органических соединений Классификация органических реакций.

План лекции

Понятие субстрата, нуклеофила, электрофила.

Классификация органических реакций.

обратимые и необратимые

радикальные, электрофильные, нуклеофильные, синхронные.

моно- и бимолекулярные

реакции замещения

реакции присоединения

реакции элиминирования

окисление и восстановление

кислотно-основные взаимодействия

Реакции региоселективные, хемоселективные, стереоселективные.

Реакции электрофильного присоединения. Правило Морковникова, антиморковниковское присоединение.

Реакции электрофильного замещения: ориентанты 1-го и 2-го рода.

Кислотно-основные свойства органических соединений.

кислотность и основность по Бренстеду

кислотность и основность по Льюису

Теория жестких и мягких кислит и оснований.

Классификация органических реакций

Систематизация органических реакций позволяет свести многообразие этих реакций к сравнительно не большому числу типов. Органические реакции можно классифицировать:

по направлению: обратимые и необратимые

по характеру изменения связей в субстрате и реагенте.

Субстрат – молекула, которая предоставляет атом углерода для образования новой связи

Реагент - действующее на субстрат соединение.

Реакции по характеру изменения связей в субстрате и реагенте можно разделить на:

радикальные R

электрофильные Е

нуклеофильные N (Y)

синхронные или согласованные

Механизм реакций SR

Инициирование

Рост цепи

Обрыв цепи

КЛАССИФИКАЦИЯ ПО КОНЕЧНОМУ РЕЗУЛЬТАТУ

Соответствие с конечным результатом реакции бывают:

А) реакции замещения

Б) реакции присоединения

В) реакции элиминирования

Г) перегруппировки

Д) окисление и восстановление

Е) кислотно-основные взаимодействия

Реакции также бывают:

Региоселективные – предпочтительно протекающие по одному из нескольких реакционных центров.

Хемоселективные – предпочтительное протекание реакции по одной из родственных функциональных групп.

Стереоселективные – предпочтительное образование одного из нескольких стереоизомеров.

Реакционная способность алкенов, алканов, алкадиенов, аренов и гетероциклических соединений

Основу органических соединений составляют углеводороды. Мы будем рассматривать лишь те реакции, осуществляемых в биологических условиях и соответственно не с самими углеводородами, а с участием углеводородных радикалов.

К ненасыщенным углеводородам мы относим алкены, алкадиены, алкины, циклоалкены и ароматические углеводороды. Объединяющее начало для них π – электронное облако. В динамических условиях также органические соединения склонны подвергаться атаке Е+

Однако, реакции взаимодействия для алкинов и аренов с реагенами приводит к разным результатам,так как, в этих соединениях разная природа π – электронного облака: локализованная и делокализиванная.

Рассмотрение механизмов реакций начнем с реакций А Е. Как нам известно, алкены взаимодействуют с

Механизм реакции гидратации

По правилу Марковникова – присоединение к непредельным углеводородам несимметричного строения соединений с общей формулой НХ - атом водорода присоединяется к наиболее гидрогенизированому атому углерода,если заместитель ЭД. При антимарковниковском присоединении атом водорода присоединяется к наименее гидрогенизированному, если заместитель ЭА.

Реакции электрофильного замещения в ароматических системах имеют свои особенности. Первая особенность состоит в том, что для взаимодействия с термодинамически устойчивой ароматической системой требуются сильные электрофилы, которые, как правило, генерируются с помощью катализаторов.

Механизм реакции S E

ОРИЕНТИРУЮЩЕЕ ВЛИЯНИЕ
ЗАМЕСТИТЕЛЕЙ

Если в ароматическом ядре находится какой-либо заместитель, то он обязательно оказывает влияние на распределение электронной плотности кольца. ЭД – заместители (ориентанты 1-го ряда) СН 3 , ОН, ОR, NН 2 , NR 2 – облегчают замещение по сравнению с не замещенным бензолом и направляют входящую группу в орто- и пара- положение. Если ЭД заместители сильные, то не требуется катализатор эти реакции протекают в 3 стадии.

ЭА – заместители (ориентанты II-го рода) затрудняют реакции электрофильного замещения по сравнению с не замещенным бензолом. Реакции SЕ идет в более жестких условиях, входящая группа вступает в мета положение. К заместителям II рода относятся:

СООН, SО 3 Н, СНО, галогены и др.

Реакции SЕ характерны также для гетероциклических углеводородов. Пиррол, фуран, тиофен и их производные относятся к π- избыточным системам и достаточно легко вступает в реакции SЕ. Они легко галогенируются, алкилируются, ацилируются, сульфируются, нитрируются. При выборе реагентов необходимо учитывать их не стабильность в сильнокислотной среде т.е ацидофобность.

Пиридин и другие гетероциклические системы с пиридиновым атомом азота,являются π –не достаточными системами, они гораздо труднее вступают в реакции SЕ, при этом входящий электрофил занимает β-положение по отношению к атому азота.

Кислотные и основные свойства органических соединений

Важнейшими аспектами реакционной способности органических соединений являются кислотно-основные свойства органических соединений.

Кислотность и основность также важные понятия, определяющие многие функциональные физико-химические и биологические свойства органических соединений. Кислотный и основной катализ является одной из наиболее распространенных ферментативных реакций. Слабые кислоты и основания – обычные компоненты биологических систем, играющие важную роль в метаболизме и его регуляции.

В органической химии существует несколько концепций кислот и оснований. Общепринятая в неорганической и органической химии теория кислот и оснований Бренстеда. Согласно Бренстеду, кислоты представляют вещества, способные отдать протон, а основания – вещества, способные присоединить протон.

Кислотность по Бренстеду

В принципе, большинство органических соединений можно рассматривать как кислоты, поскольку в органических соединениях Н связан с С, N O S

Органические кислоты соответственно делятся на С – Н, N – Н, О – Н, S-Н – кислоты.


Кислотность оценивается в виде Ка или - lg Ка = рКа, чем меньше рКа, тем сильнее кислота.

Количественная оценка кислотности органических соединений определена далеко не у всех органических веществ. Поэтому важно выработать умение проводить качественную оценку кислотных свойств различных кислотных центров. Для этого используют общий методический подход.

Сила кислоты определяется стабильностью аниона(сопряженного основания). Чем стабильнее анион, тем сильнее кислота.

Стабильность аниона определяется совокупностью ряда факторов:

электроотрицательностью и поляризуемостью элемента в кислотном центре.

степенью делокализации отрицательного заряда в анионе.

характером связанного с кислотным центром радикала.

сольватационными эффектами (влияние растворителя)

Рассмотрим последовательно роль всех этих факторов:

Влияние электроотрицательности элементов

Чем более электроотрицателен элемент, тем более делокализован заряд и тем стабильнее анион, тем сильнее кислота.

С (2,5) N (3,0) О(3.5) S (2,5)

Поэтому кислотность изменяется в ряду СН< NН < ОН

Для SH – кислот преобладает другой фактор – поляризуемость.

Атом серы больше по размеру и имеет вакантные d – орбитали. следовательно, отрицательный заряд способен делокализоваться в большом объеме, что приводит к большей стабильности аниона.

Тиолы, как более сильные кислоты, реагируют с щелочами, а также с оксидами и солями тяжелых металлов, тогда, как спирты (слабые кислоты) способны реагировать только с активными металлами

Относительно высокая кислотность толов используется в медицине, в химии лекарственных средств. Например:

Применяют при отравлениях As, Hg, Cr, Bi, действие которых обусловлен связыванием металлов и выведением их из организма. Например:

При оценке кислотности соединений с одинаковым атомом в кислотном центре определяющим фактором является делокализация отрицательного заряда в анионе. Стабильность аниона значительно повышается с появлением возможности делокализации отрицательного заряда по системе сопряженных связей. Значительное увеличение кислотности в фенолах, по сравнению со спиртами объясняется возможностью делокализации в ионах по сравнению с молекулой.

Высокая кислотность карбоновых кислот обусловлена резонансной стабильностью карбоксилат аниона

Делокализация заряда способствует наличие электроноакцепторных заместителей (ЭА) они стабилизируют анионы, тем самым увеличивают кислотность. Например, введение в молекулу ЭА заместителя

Влияние заместителя и растворителя

a - оксикислоты более сильные кислоты, чем соответствующие карбоновые кислоты.

ЭД – заместители наоборот понижают кислотность. Растворители оказывают большее влияние на стабилизацию аниона, как правило лучше сольватируются небольшие ионы с низкой степенью делокализации заряда.

Влияние сольватации можно проследить например в ряду:

Если атом в кислотном центре несет положительный заряд это приводит к усилению кислотных свойств.

Вопрос к аудитории: какая кислота – уксусная или пальмитиновая С 15 Н 31 СООН – должна иметь меньшее значение рКа?

Если атом в кислотном центре несет положительных заряд, это приводит к усилению кислотных свойств.

Можно отметить сильную СН – кислотность σ – комплекса, образующегося в реакции электрофильного замещения.

Основность по Бренстеду

Для того, чтобы образовать связь с протоном, необходимо не поделенная электронная пару у гетероатома,

либо быть анионами. Существуют п-основания и

π-основания, где центром основности являются

электроны локализованной π-связи или π-электроны сопряженной системы (π-компоненты)

Сила основания зависит от тех же факторов, что и кислотность, но влияние их противоположно. Чем больше электроотрицательность атома, тем прочнее он удерживает неподеленную пару электронов, и тем менее доступна она для связи с протоном. Тогда в целом сила n-оснований с одинаковым заместителем изменяется в ряду:

Наибольшую основность из органических соединений проявляют амины и спирты:

Соли органических соединений с минеральными кислотами хорошо растворимы. Многие лекарственные средства используют в виде солей.

Кислотно-основной центр в одной молекуле(амфотерность)

Водородные связи как кислотно-основное взаимодействие

Для всех α – аминокислот является преобладание катионных форм в сильнокислых и анионных в сильнощелочных средах.

Наличие слабых кислотных и основных центров приводит к слабым взаимодействиям – водородным связям. Например: имидазол при небольшой молекулярной массе имеет высокую температуру кипения за счет наличия водородных связей.


Дж. Льюисом предложена более общая теория кислот и оснований, определяющаяся на строении электронных оболочек.

Кислотами по Льюису могут быть атом, молекула или катион, обладающие вакантной орбиталью, способное принимать пару электронов с образованием связи.

Представителями кислот Льюиса служат галогениды элементов II и III групп периодической системы Д.И. Менделеева.

Основания Льюиса атом, молекула или анион способный предоставлять пару электронов.

К основаниям Льюиса относятся амины, спирты, простые эфиры, тиолы, тиоэфиры и содержащие π-связи соединения.

Например, приведенное ниже взаимодействие можно представить как взаимодействие кислот и оснований Льюиса

Важным следствие теории Льюиса является то, что любое органическое вещество можно представить как кислотно-основной комплекс.

В органических соединениях внутримолекулярные водородные связи возникают значительно реже, чем межмолекулярные, но также имеют место в биоорганических соединениях и их можно рассматривать как кислотно-основные взаимодействия.

Понятие «жесткие» и «мягкие» не тождественны сильным и слабым кислотам и основаниям. Это независимые две характеристики. Суть ЖКМО состоит в том, что жесткие кислоты реагируют с жесткими основаниями и мягкие кислоты реагируют с мягкими основаниями.

В соответствии с принципом жестких и мягких кислот и оснований (ЖМКО) Пирсона кислоты Льюиса делятся на жесткие и мягкие. Жесткие кислоты- акцепторные атомы с малым размером,большим положительным зарядом, большой электроотрицательностью и низкой поляризуемостью.

Мягкие кислоты- акцепторные атомы большого размера с малым положительным зарядом, с небольшой электроотрицательностью и высокой поляризуемостью .

Суть ЖКМО состоит в том, что жесткие кислоты реагируют с жесткими основаниями и мягкие кислоты реагируют с мягкими основаниями. Например:

Окисление и восстановление органических соединений

Окислительно-восстановительные реакции занимают важнейшее значение для процессов жизнедеятельности. С их помощью организм удовлетворяет свои энергетические потребности, поскольку при окислении органических веществ происходит высвобождение энергии.

С другой стороны эти реакции служат для превращения пищи в компоненты клетки. Реакции окисления способствуют детоксикации и выведению лекарственных средств из организма.

Окисление – процесс удаления водорода с образованием кратной связи или новых более полярных связей

Восстановление – процесс обратный окислению.

Окисление органических субстратов протекает тем легче, чем сильнее его тенденция к отдаче электронов.

Окисление и восстановление необходимо рассматривать по отношению к определенным классам соединений.

Окисление С – Н связей (алканов и алкилов)

При полном сгорании алканов образуется СО 2 и Н 2 О при этом выделяется тепло. Другие пути их окисления и восстановления можно представить следующими схемами:

Окисление насыщенных углеводородов протекает в жестких условиях (хромовая смесь горячая) более мягкие окислители не действуют на них. Промежуточными продуктами окисления являются спирты, альдегиды, кетоны, кислоты.

Гидропероксиды R – О – ОН важнейшие промежуточные продукты окисления С – Н связей в мягких условиях, в частности in vivo

Важной реакцией окисления С – Н связей в условиях организма является ферментативное гидроксилирование.

Примером может быть получение спиртов при окислении пищи. За счет молекулярного кислорода и его активных форм. осуществляется в in vivo.

Перекись водорода может служить в организме гидроксилирующим агентом.

Избыток перекиси должен разлагаться с помощью каталазы на воду и кислород.

Окисление и восстановление алкенов можно представить следующими превращениями:

Восстановление алкенов

Окисление и восстановление ароматических углеводородов

Бензол чрезвычайно тяжело окисляется даже в жестких условиях по схеме:

Способность к окислению заметно увеличивается от бензола к нафталину и далее к антрацену.

ЭД- заместители облегчают окисление ароматических соединений. ЭА – затрудняют окисление. Восстановление бензола.

С 6 Н 6 + 3Н 2

Ферментативное гидроксилирование ароматических соединений

Окисление спиртов

По сравнению с углеводородами, окисление спиртов осуществляется в более мягких условиях

Важнейшей реакцией диолов в условиях организма является превращения в системе хинон-гидрохинон

Перенос электронов от субстрата к кислороду осуществляется в метахондриях.

Окисление и восстановление альдегидов и кетонов

Один из наиболее легко окисляющийся классов органических соединений

2Н 2 С = О + Н 2 О СН 3 ОН + НСООН особенно легко протекает на свету

Окисление азотсодержащих соединений

Амины окисляются достаточно легко конечными продуктами окисления являются нитросоединения

Исчерпывающее восстановление азотсодержащих веществ приводит к образованию аминов.

Окисление аминов в in vivo

Окисление и восстановление тиолов


Cравнительная характеристика О-В свойств органических соединений.

Наиболее легко окисляются тиолы и 2-х-атомные фенолы. Достаточно легко окисляются альдегиды. Труднее окисляются спирты, причем первичные легче, чем вторичные, третичные. Кетоны устойчивы к окислению или окисляются с расщеплением молекулы.

Алкины окисляются легко даже при комнатной температуре.

Наиболее трудно окисляются соединения, содержащие атомы углерода в Sр3-гибридизированом состоянии, то есть насыщенные фрагменты молекул.

ЭД – заместители облегчают окисление

ЭА – затрудняют окисление.

Специфические свойства поли- и гетерофункциональных соединений.

План лекции

Поли- и гетерофункциональность, как фактор повышающий реакционную способность органических соединений.

Специфические свойства поли- и гетерофункциональных соединений:

амфотерность образование внутримолекулярных солей.

внутримолекулярная циклизация γ, δ, ε – гетерофункциональных соединений.

межмолекулярная циклизация (лактиды и декетопипирозины)

хелатообразование.

реакции элиминирования бета – гетерофункциональных

соединений.

таутомерия кето–енольная. Фосфоенолпируват, как

макроэргическое соединение.

декарбоксилирование.

стереоизомерия

Поли-и гетерофункциональность, как причина появления специфических свойств у гидрокси-, амино- и оксокислот.

Наличие в молекуле нескольких одинаковых или разных функциональных групп составляет характерную черту биологически важных органических соединений. В молекуле может быть две и более гидроксильных групп, аминогрупп, карбоксильных групп. Например:

Важную группу веществ участников жизнедеятельности составляют гетерофункциональные соединения, имеющие попарное сочетание разных функциональных групп. Например:

В алифатических соединениях все приведённые функциональные группы проявляют ЭА характер. За счёт влияния друг на друга у них взаимно усиливается реакционная способность. Например, в оксокислотах электрофильность усиливается каждого из двух карбонильных атомов углерода под влиянием -J другой функциональной группы, что ведёт к более легкому восприятию атаки нуклеофильными реагентами.

Поскольку I эффект затухает через 3–4 связи, то важным обстоятельством является близость расположения функциональных групп в углеводородной цепи. Гетерофункциональные группы могут находится у одного и того же атома углерода (α – расположение), или у разных атомов углерода как соседних(β расположение), так и более удалённых друг от друга (γ, дельта, эпсилон) расположения.

Каждая гетерофункциональная группа сохраняет собственную реакционную способность, точнее гетерофункциональные соединения вступают как бы в «двойное» число химических реакций. При достаточном близком взаимном расположении гетерофункциональных групп происходит взаимное усиление реакционной способности каждой из них.

При одновременном присутствии в молекуле кислотной и основной групп, соединение становятся амфотерным.

Например: аминокислоты.

Взаимодействие гетерофункциональных групп

В молекуле герофункциональных соединений могут содержатся группы, способные к взаимодействию друг с другом. Например, в амфотерных соединениях, как в α- аминокислотах, возможно образование внутренних солей.

По этому все α – аминокислоты встречаются в виде биополярных ионов и хорошо растворимы в воде.

Кроме кислотно–основных взаимодействий становятся возможны и другие виды химических реакций. Например, реакции S N у SP 2 гибрид атома углерода в карбонильной группе за счёт взаимодействия со спиртовой группой образование сложных эфиров, карбоксильной группы с аминогруппой (образование амидов).

В зависимости от взаимного расположения функциональных групп эти реакции могут протекать как внутри одной молекулы (внутримолекулярные), так и между молекулами (межмолекулярные).

Поскольку в результате реакции образуется циклические амиды, сложные эфиры. то определяющим фактором становится термодинамическая устойчивость циклов. В связи с этим конечный продукт, как правило, содержит шестичленный или пятичленный циклы.

Чтобы при внутримолекулярном взаимодействии образовался в пяти или шестичленный сложноэфирный (амидный) цикл, гетерофункциональное соединение должно иметь в молекуле гамма или сигма расположение. Тогда в кл

Привет! Многие студенты медицинских вузов сейчас разбирают биоорганическую химию, она же – БОХ.

В некоторых вузах этот предмет заканчивается зачётом, в некоторых – экзаменом. Иногда бывает, что зачёт в одном вузе сравним по сложности с экзаменом в другом.

В моём университете биоорганическая химия сдавалась как раз экзаменом во время летней сессии в самый конец первого курса. Надо сказать, что БОХ относится к тем предметам, которые поначалу ужасают и могут вселять мысль — «это сдать невозможно». Особенно это конечно касается людей со слабой базой органической химии (а таких в медицинских университетах, как ни странно, довольно много).

Программы изучения биоорганической химии в разных университетах могут очень сильно отличаться, а методики преподавания – ещё сильнее.

Однако требования к студентам везде примерно одинаковые. Если очень упростить, то чтобы сдать биоорганическую химию на 5, вы должны знать названия, свойства, особенности строения и типичные реакции ряда органических веществ.

Наш преподаватель, уважаемый профессор, подавал материал так, будто бы каждый студент был самым лучшим в школе по органической химии (а биоорганическая химия по сути представляет собой усложнённый курс школьной органической химии). Наверное, он был прав в своём подходе, все должны тянуться наверх и стараться быть лучшими. Однако это привело к тому, что некоторые студенты, которые на первых 2-3 парах не понимали материал частично, ближе к середине семестра вообще перестали понимать всё.

Я решил написать этот материал по большей части из-за того, что я как раз и был таким студентом. В школе я очень любил неорганическую химию, а вот с органикой у меня всегда не складывалось. Я даже когда готовился к ЕГЭ, выбрал стратегию усиления всех своих знания по неорганике, в то же время закрепляя только базу органики. Мне кстати это чуть не вышло боком в плане вступительных баллов, но это другая история.

Я не зря сказал про методику преподавания, потому что у нас она была тоже весьма необычная. Нам сразу же, чуть ли не на первой паре, продемонстрировали методички, по которым мы должны были сдавать зачёты и затем экзамен.

Биоорганическая химия — зачёты и экзамен

Весь курс у нас делился на 4 крупных темы, каждая из которых заканчивалась зачётным занятием. Вопросы к каждому из четырёх зачётов у нас уже были с первых пар. Они, конечно же, пугали, однако в то же время они служили своеобразной картой, по которой следует двигаться.

Первый зачёт был совсем элементарный. Он был посвящён, в основном, номенклатуре, тривиальным (бытовым) и международным названиям, и, конечно же, классификации веществ. Также в том или ином виде затрагивались признаки ароматичности.

Второй зачёт после первого казался значительно более сложным. Там необходимо было расписывать свойства и реакции таких веществ, как кетоны, альдегиды, спирты, карбоновые кислоты. Например, одна из типичнейших реакций альдегидов — это реакция серебряного зеркала. Довольно красивое зрелище. Если к какому-либо альдегиду вы добавите реактив Толленса, то есть ОН, то на стенке пробирки вы увидите осадок, напоминающий зеркало, вот как это выглядит:

Третий зачёт на фоне второго не казался таким грозным. Все уже привыкли писать реакции и запоминать свойства по классификациям. В третьем зачёте речь шла о соединениях с двумя функциональными группами – аминофенолы, аминоспирты, оксокислоты и другими. Также в каждом билете был минимум один билет про углеводы.

Четвёртый зачёт по биоорганической химии был почти целиком и полностью посвящён белкам, аминокислотам и пептидным связям. Особой изюминкой были вопросы, на которых требовалось собрать РНК и ДНК.

Кстати, как раз вот так выглядит аминокислота — вы можете увидеть аминогруппу (она подкрашена жёлтым на этом рисунке) и группу карбоксильной кислоты (она сиреневая). Именно с веществами этого класса приходилось иметь дело в четвертом зачёте.

Каждый зачёт сдавался у доски – студент должен без подсказок расписать и пояснить все необходимые свойства в виде реакций. Например, если вы сдаёте второй зачёт, у вас в билете свойства спиртов. Вам преподаватель говорит – возьми пропанол. Вы пишете формулу пропанола и 4-5 типичных реакций, чтобы проиллюстрировать его свойства. Могла быть и экзотика, вроде серосодержащих соединений. Ошибка даже в индексе одного продукта реакции зачастую отправляла дальше учить этот материал до следующей попытки (которая была через неделю). Страшно? Сурово? Конечно!

Однако у такого подхода есть очень приятный побочный эффект. Во время регулярных семинарских занятий приходилось тяжко. Многие сдавали зачёты по 5-6 раз. Но зато на экзамене было очень легко, ведь каждый билет содержал 4 вопроса. Именно, по одному из каждого уже выученного и решённого зачёта.

Поэтому я даже не буду расписывать тонкости подготовки к экзамену по биоорганической химии. В нашем случае вся подготовка сводилась к тому, как мы готовились к самим зачётам. Уверенно сдал каждый из четырёх зачётов – перед экзаменом просто просмотри свои же черновики, распиши ещё самые основные реакции и сразу всё восстановится. Дело в том, что органическая химия — это очень логичная наука. Запоминать нужно не огромные строки реакций, а сами механизмы.

Да, отмечу, что это работает далеко не со всеми предметами. Грозную анатомию не получится сдать, просто почитав свои записи накануне. Ряд других предметов также имеет свои особенности. Даже если в вашем медицинском университете биоорганическая химия преподаётся как-то иначе, возможно, вам нужно будет скорректировать вашу подготовку и осуществлять её немного не так, как делал я. В любом случае, удачи вам, понимайте и любите науку!


План 1. Предмет и значение биоорганической химии 2. Классификация и номенклатура органических соединений 3. Способы изображения органических молекул 4. Химическая связь в биоорганических молекулах 5. Электронные эффекты. Взаимное влияние атомов в молекуле 6. Классификация химических реакций и реагентов 7. Понятие о механизмах химических реакций 2


Предмет биоорганической химии 3 Биоорганическая химия самостоятельный раздел химической науки, что изучает строение, свойства и биологические функции химических соединений органического происхождения, которые принимают участие в обмене веществ живых организмов.


Обектами изучения биоорганической химии являются низкомолекулярные биомолекулы и биополимеры (белки, нуклеиновые кислоты и полисахариды), биоре-гуляторы (ферменты, гормоны, витамины и другие), природные и синтетические физиологически активные соединения, в том числе лекарственные средства и вещества с токсичным действием. Биомолекулы - биоорганические соединения, которые входят в состав живых организмов и специализированные для образования клеточных структур и участия в биохимических реакциях, составляют основу обмена веществ (метаболизм) и физиологических функций живых клеток и многоклеточных организмов в целом. 4 Классификация биоорганических соединений


Обмен веществ - совокупность химических реакций, которые протекают в организме (in vivo). Обмен веществ называют также метаболизмом. Метаболизм может происходить в двух направлениях – анаболизм и катаболизм. Анаболизм - это синтез в организме сложных веществ из сравнительно простых. Он протекает с затратой энергии (эндотермический процесс). Катаболизм - напротив, распад сложных органических соединений на более простые. Проходит он с выделением энергии (экзотермический процесс). Метаболитические процессы проходят при участии ферментов. Ф е р м е н т ы исполняют в организме роль био катализаторов. Без ферментов биохимические процессы или совсем не протекали бы, или протекали бы очень медленно и организм не смог бы поддерживать жизнь. 5


Биоэлементы. В состав биоорганических соединений, кроме атомов углерода (С), которые составляют основу любой органической молекулы, входят также водород (Н), кислород (О), азот (N), фосфор (Р) и сера (S). Эти биоэлементы (органогены) сконцентрированы в живых организмах в количестве, что свыше 200 раз превышает их содержание в объектах неживой природы. Отмеченные элементы составляют свыше 99% элементного состава биомолекул. 6




Биоорганическая химия возникла из недр органической химии и базируется на ее идеях и методах. В истории развития для органической химии отведены такие этапы: эмпирический, аналитический, структурный и современный. Период от первого знакомства человека с органическими веществами до конца XVІІІ века считается эмпирическим. Основной итог этого периода – люди осознали значение элементного анализа и установление атомных и молекулярных масс. Теория витализма - жизненной силы (Берцелиус). До 60-х годов XІX века продолжался аналитический период. Он ознаменовался тем, что с конца первой четверти XІX века были сделаны ряд перспективных открытий, которые нанесли сокрушительный удар по виталистической теории. Первым в этом ряду был ученик Берцелиуса, немецкий химик Велер. Он осуществил ряд открытий в 1824 г. – синтез щавелевой кислоты из дициана: (CN) 2 НООС – СООН р. – синтез мочевины из аммония цианата: NH 4 CNO NH 2 – C – NH 2 О 8


В 1853 Ш. Жерар разработал «теорию типов» и и пользовал её для классификации органических соединений. Согласно Жерару, более сложные органические соединения могут быть произведены от следующих основных четырёх типов веществ: НННН тип ВОДОРОДА НННН O тип ВОДЫ Н Cl тип ХЛОРИСТОГО ВОДОРОДА ННHННH N тип АММИАКА С 1857 по предложению Ф. А. Кекуле углеводороды стали относить к типу метана ННHНННHН С 9


Основные положения теории строения органических соединений (1861) 1) атомы в молекулах соединены друг с другом химическими связями в соответствии с их валентностью; 2) атомы в молекулах органических веществ соединяются между собой в определенной последовательности, что обусловливает химическое строение (структуру) молекулы; 3) свойства органических соединений зависят не только от числа и природы входящих в их состав атомов, но и от химического строения молекул; 4) в органических молекулах существует взаимодействие между атомами, как связанными друг с другом, так и несвязанными; 5) химическое строение вещества можно определить в результате изучения его химических превращений и, наоборот, по строению вещества можно характеризовать его свойства. 10


Основные положения теории строения органических соединений (1861) Структурная формула это изображение последовательности связи атомов в молекуле. Брутто-формула – СН 4 О или CH 3 OH Структурная формула Упрощенные формулы строения иногда называют рациональными Молекулярная формула - формула органического соединения, которая указывает на количество атомов каждого элемента в молекуле. Например: С 5 Н 12 – пентан, С 6 Н 6 – бензин и т.д. 11






Етапы развития биоорганической химии Как отдельная область знаний, которая совмещает концептуальные принципы и методологию органической химии с одной стороны и молекулярной биохимии и молекулярной фармакологии с другой стороны, биоорганическая химия сформировалась в годах ХХ столетия на основании разработок химии природных веществ и биополимеров. Фундаментальное значение современная биоорганическая химия приобрела благодаря работам В. Стейна, С. Мура, Ф. Сенгера (анализ аминокислотного состава и определение первичной структуры пептидов и белков), Л. Полинга и Х. Астбери (выяснение строения -спирали и -структуры и их значение в реализации биологических функций белковых молекул), Е. Чаргаффа (расшифровывание особенностей нуклеотидного состава нуклеиновых кислот), Дж. Уотсона, Фр. Крика, М. Уилкинса, Р. Франклина (установление закономерностей пространственной структуры молекулы ДНК), Г. Корани (химический синтез гена) и т.д. 14


Классификация органических соединений по строению углеродного скелета и природе функциональной группы Огромное число органических соединений побудило химиков провести их классификацию. В основу классификации органических соединений положены два классификационных признака: 1. Строение карбонового скелета 2. Природа функциональных групп Классификация по способу строения карбонового скелета: 1. Ациклические (алканы, алкены, алкины, алкадиены); 2. Циклические 2.1. Карбоциклические (алициклические и ароматические) 2.2. Гетероциклические 15 Ациклические соединения называют еще алифатическими. К ним принадлежат вещества с незамкнутой углеродной цепью. Ациклические соединения делят на насыщенные (или предельные) С n H 2n+2 (алканы, парафины) и ненасыщенные (непредельные). К последним относят алкены С n H 2n, алкины С n H 2n -2, алкадиены С n H 2n -2.


16 Циклические соединения в составе своих молекул содержат кольца (циклы). Если в состав циклов входят лишь атомы углерода, то такие соединения называют карбоциклическими. В свою очередь карбоциклические соединения разделяют на алициклические и ароматические. К алициклическим углеводородам (циклоалканы) относят циклопропан и его гомологи - циклобутан, циклопентан, циклогексан и так далее. Если же в циклическую систему кроме углеводорода входят и другие элементы, то такие соединения относят к гетероциклическим.


Классификация по природе функциональной группы Функциональная группа – это атом или группа определенным образом связанных атомов, наличие которых в молекуле органического вещества определяет характерные свойства и его принадлежность к тому или другому классу соединений. По количеству и однородности функциональных групп органические соединения делят на моно-, поли- и гетерофункциональные. Вещества с одной функциональной группой называют монофунк-циональными, с несколькими одинаковыми функциональными группами полифункциональными. Соединения, содержащие несколько различных функциональных групп гетеро функциональными. Важно, что соединения одного класса объединены в гомологические ряды. Гомологический ряд это ряд органических соединений с одинаковыми функциональными группами и однотипным строением, каждый представитель гомологического ряда отличается от предыдущего на постоянную единицу (СН 2), которую называют гомологической разностью. Члены гомологического ряда называют гомологами. 17


Номенклатурные системы в органической химии – тривиальная, рациональная и международная (IUPAC) Химическая номенклатура совокупность названий индивидуальных химических веществ, их групп и классов, а также правила составления их названий.Химическая номенклатура совокупность названий индивидуальных химических веществ, их групп и классов, а также правила составления их названий. Тривиальная (историческая) номенклатура связана с процессом получения веществ (пирогаллол – продукт пиролиза галловой кислоты), источника происхождения, из которого получали (муравьиная кислота) и т.д. Тривиальные названия соединений широко применяют в химии природных и гетероциклических соединений (цитраль, гераниол, тиофен, пиррол, хинолин, и др.).Тривиальная (историческая) номенклатура связана с процессом получения веществ (пирогаллол – продукт пиролиза галловой кислоты), источника происхождения, из которого получали (муравьиная кислота) и т.д. Тривиальные названия соединений широко применяют в химии природных и гетероциклических соединений (цитраль, гераниол, тиофен, пиррол, хинолин, и др.). В основе рациональной номенклатуры используется принцип деления органических соединений на гомологические ряды. Все вещества в определенном гомологическом ряду рассматриваются как производные самого простого представителя данного ряда – первого или иногда второго. В частности, у алканов – метана, у алкенов – этилена и т.д.В основе рациональной номенклатуры используется принцип деления органических соединений на гомологические ряды. Все вещества в определенном гомологическом ряду рассматриваются как производные самого простого представителя данного ряда – первого или иногда второго. В частности, у алканов – метана, у алкенов – этилена и т.д. 18


Международная номенклатура (IUPAC). Правила современной номенклатуры были разработаны в 1957 году на ХІХ конгрессе Международного союза теоретической и прикладной химии (International Union of Pure and Applied Chemistry – IUPAC). Радикально-функциональная номенклатура. В основе этих названий лежит название функционального класса (спирт, эфир, кетон и др.), которому предшествуют названия углеводородных радикалов, например: алилхлорид, диэтиловый эфир, диметилкетон, пропиловый спирт и т.д. Заместительная номенклатура. Правила номенклатуры. Родоначальная структура - структурный фрагмент молекулы (молекулярный остов), лежащий в основе названия соединения, главная углеродная цепь атомов для алициклических соединений, для карбоциклических – цикл. 19


Химическая связь в органических молекулах Химическая связь – явление взаимодействия внешних электронных оболочек (валентных электронов атомов) и ядер атомов, обуславливающее существование молекулы или кристалла как целого. Как правило атом, принимая, отдавая электрон или образуя общую электронную пару, стремится приобрести конфигурацию внешней электронной оболочки аналогичную инертным газам. Для органических соединений характерны следующие типы химических связей: - ионная связь -ковалентная связь -донорно - акцепторная связь -водородная связь Также существуют некоторые другие типы химической связи (металлическая, одноэлектронная, двухэлектронная трехцентровая), однако в органических соединениях они практически не встречаются. 20






Типы связей в органических соединениях Наиболее характерной для органических соединений является ковалентная связь. Ковалентная связь - это взаимодействие атомов, которое реализуется посредством образования общей электронной пары. Данный тип связи образуется между атомами, которые имеют сравнимые значения электроотрицательности. Электроотрицательность - свойство атома, показывающее способность оттягивать к себе электроны от других атомов. Ковалентная связь может быть полярной или неполярной. Неполярная ковалентная связь возникает между атомами с одинаковым значением электроотрицательности


Типы связей в органических соединениях Ковалентная полярная связь образуется между атомами, которые имеют различные значения электроотрицательности. В данном случае связанные атомы приобретают частичные заряды δ+δ+ δ-δ- Особым подтипом ковалентной связи является донорно- акцепторная связь. Как и в предыдущих примерах данный тип взаимодействия обусловлен наличием общей электронной пары, однако последняя предоставляется одним из атомов образующих связь (донором) и принимается другим атомом (акцептором) 24


Типы связей в органических соединениях Ионная связь образуется между атомами, которые сильно отличаются по значениям электроотрицательности. В данном случае электрон менее электроотрицательного элемента (зачастую это металл) полностью переходит к более электроотрицательному элементу. Данный переход электрона обуславливает появление положительного заряда у менее электроотрицательного атома и отрицательного у более электроотрицательного. Таким образом, образуется два иона с противоположным зарядом, между которыми существует электровалентное взаимодействие. 25


Типы связей в органических соединениях Водородная связь является электростатическим взаимодействием между атомом водорода, который связан сильнополярной связью, и электронными парами кислорода, фтора, азота, серы и хлора. Данный тип взаимодействия является довольно слабым взаимодействием. Водородная связь может быть межмолекулярной и внутримолекулярной. Межмолекулярная водородная связь (взаимодействие между двумя молекулами этилового спирта) Внутримолекулярная водородная связь в салициловом альдегиде 26


Химическая связь в органических молекулах Современная теория химической связи основывается на квантово-механической модели молекулы как системы, состоящей из электронов и атомных ядер. Краеугольным понятием квантово-механической теории является атомная орбиталь. Атомная орбиталь – часть пространства, в котором вероятность нахождения электронов является максимальной. Связь, таким образом, может быть рассмотрена как взаимодействие («перекрывание») орбиталей, которые несут по одному электрону с противоположными спинами. 27


Гибридизация атомных орбиталей Согласно квантово-механической теории, количество образованных атомом ковалентных связей определяется количеством одноэлектронных атомных орбиталей (количеством неспаренных электронов). У атома углерода в основном состоянии всего два неспаренных электрона, однако возможный переход электрона с 2s на 2 рz обуславливает возможность образования четырех ковалентных связей. Состояние атома углерода, при котором он имеет четыре неспаренных электрона называется «возбужденным». Несмотря на то, что орбитали углерода являются неравноценными, известно, что возможно образование четырех эквивалентных связей вследствие гибридизации атомных орбиталей. Гибридизация – явление, при котором из нескольких разных по форме и близких по энергии орбиталей образуется такое же количество одинаковых по форме и количеству орбиталей. 28






Гибридные состояния атома углерода в органических молекулах ПЕРВОЕ ГИБРИДНОЕ СОСТОЯНИЕ Атом С находится в состоянии sp 3 –гибридизации, образует четыре σ-связи, формирует четыре гибридные орбитали, которые располагаются в форме тетраэдра (валентный угол) σ–связь 31


Гибридные состояния атома углерода в органических молекулах ВТОРОЕ ГИБРИДНОЕ СОСТОЯНИЕ Атом С находится в состоянии sp 2 –гибридизации, образует три σ- связи, формирует три гибридные орбитали, которые располагаются в форме плоского треугольника (валентный угол 120) σ–связи π–связь 32


Гибридные состояния атома углерода в органических молекулах ТРЕТЬЕ ГИБРИДНОЕ СОСТОЯНИЕ Атом С находится в состоянии sp–гибридизации, образует две σ- связи, формирует две гибридные орбитали, которые располагаются в линию (валентный угол 180) σ–связи π–связи 33








Характеристики химических связей Шкала ПОЛИНГА: F-4,0; O – 3,5; Cl – 3,0; N – 3,0; Br – 2,8; S – 2,5; C-2,5; H-2,1. разница 1,7


Характеристики химических связей Поляризуемость связи - смещение электронной плотности под действием внешних факторов. Поляризуемость связи - степень подвижности электронов. С увеличением атомного радиуса возростает поляризуемость электронов. Поэтому поляризуемость связи Карбон - галоген увеличивается следующим образом: C-F


Электронные эффекты. Взаимное влияние атомов в молекуле 39 По современным теоретическим представлениям, реакционная способность органических молекул предопределена смещением и подвижностью электронных облаков, которые образуют ковалентную связь. В органической химии различают два типа смещений электронов: а) электронные смещения, происходящие в системе -связей, б) электронные смещения, передающиеся системой -связей. В первом случае имеет место так называемый индуктивный эффект, во втором - мезомерный. Индуктивный эффект - перераспределение электронной плотности (поляризация), возникающее в результате разницы электроотрицательности между атомами молекулы в системе -связей. Через незначительную поляризуемость -связей индуктивний эффект быстро угасает и через 3-4 связи он почти не проявляется.


Электронные эффекты. Взаимное влияние атомов в молекуле 40 Понятие об индуктивном эффекте было введено К. Ингольдом, им же были введены обозначения: –I-эффект в случае понижения заместителем электронной плотности +I-эффект в случае повышения заместителем электронной плотности Положительный индуктивний эффект проявляют алкильные радикалы (СН 3, С 2 Н 5 - и т.д.). Все другие заместители, связанные с атомом углерода, проявляют отрицательный индуктивный эффект.


Электронные эффекты. Взаимное влияние атомов в молекуле 41 Мезомерным эффектом называют перераспределение электронной плотности вдоль сопряженной системы. К сопряженным системам принадлежат молекулы органических соединений, в которых чередуются двойные и одинарные связи или когда рядом с двойной связью размещен атом, имеющий на р-орбитали неподеленную пару электронов. В первом случае имеет место, - сопряжение, а во втором – р, -сопряжение. Сопряженные системы бывают с открытой и замкнутой цепью сопряжения. Примером таких соединений является 1,3-бутадиен и бензин. В молекулах этих соединений атомы углерода находятся в состоянии sp 2 -гибридизации и за счет негибридных p-орбиталей образуют -связи, которые взаимно перекрываются между собой и формируют единственное электронное облако, то есть имеет место сопряжение.


Электронные эффекты. Взаимное влияние атомов в молекуле 42 Существует два вида мезомерного эффекта – положительный мезомерный эффект (+М) и отрицательный мезомерный эффект (-М). Положительный мезомерный эффект проявляют заместители, предоставляющие p-электроны в сопряженную систему. К таковым относят: -O, -S -NН 2, -ОН, -OR, Hal (галогены) и другие заместители, которые имеют отрицательный заряд или неподеленную пару электронов. Отрицательный мезомерный эффект характерен для заместителей оттягивающих на себя -электронную плотность из сопряженной системы. К таковым относят заместители, имеющие кратные связи между атомами с разной электроотрицательностью: - N0 2 ; -SO 3 Н; >С=О; -СООН и другие. Мезомерный эффект графически отражается согнутой стрелкой, которая показывает направление смещения электронов В отличие от индукционного эффекта, мезомерный эффект не погасает. Он передается полностью по системе, независимо от длины цепи сопряжения. С=О; -СООН и другие. Мезомерный эффект графически отражается согнутой стрелкой, которая показывает направление смещения электронов В отличие от индукционного эффекта, мезомерный эффект не погасает. Он передается полностью по системе, независимо от длины цепи сопряжения.">


Типы химических реакций 43 Химическую реакцию можно рассматривать как взаимо- действие реагента и субстрата. В зависимости от способа разрыва и образования химической связи в молекулах, органические реакции делят на: а) гомолитические б) гетеролитические в) молекулярные Гомолитические или свободно-радикальные реакции обусловлены гомолитическим разрывом связи, когда у каждого атома остается по одному электрону, то есть образуются радикалы. Гомолитический разрыв проис- ходит при высоких температурах, действии кванта света или катализе.


Гетеролитические или ионные реакции протекают таким образом, что пара связующих электронов остается около одного из атомов и образуются ионы. Частица с электронной парой называется нуклеофи- льной и имеет отрицательный заряд (-). Частица без электронной пары называется электрофи- льной и имеет положительный заряд (+). 44 Типы химических реакций


Механизм химической реакции 45 Механизмом реакции называют совокупность элементарных (простых) стадий, из которых состоит данная реакция. Механизм реакции чаще всего включает такие стадии: активация реагента с образованием электрофила, нуклеофила или свободного радикала. Для активации реагента нужен, как правило, катализатор. Во второй стадии происходит взаимодействие активированного реагента с субстратом. При этом образуются промежуточные частицы (интермедиаты). К последним принадлежат -комплексы, -комплексы (карбокатионы), карбанионы, новые свободные радикалы. На конечной стадии проходит присоединение или отщепление к (от) образованному во второй стадии интермедиату какой-то частицы с формированием конечного продукта реакции. Если реагент при активации генерирует нуклеофил, то это - нуклеофильные реакции. Их помечают буквой N -(в индексе). В случае, когда реагент генерирует электрофил, реакции принадлежат к электрофильным (Е). Аналогично можно сказать и о свободнорадикальных реакциях (R).


Нуклеофилы – реагенты, имеющие отрицательный заряд или обогащенный электронной плотностью атом: 1) анионы: OH -, CN -, RO -, RS -, Hal - и другие анионы; 2) нейтральные молекулы с неподеленными парами электронов: NH 3, NH 2 R, H 2 O, ROH и другие; 3) молекулы с избыточной электронной плотностью (имеющие - связи). Электрофилы – реагенты, имеющие положительный заряд или обедненный электронной плотностью атом: 1) катионы: Н + (протон), НSO 3 + (ион гидрогенсульфония), NO 2 + (ион нитрония), NO (ион нитрозония) и другие катионы; 2) нейтральные молекулы, имеющие вакантную орбиталь: AlCl 3, FeBr 3, SnCl 4, BF 4 (кислоты Льюиса), SO 3 ; 3) молекулы с обедненной электронной плотностью на атоме. 46






49


50


51


52



Столько было всяких удивительных происшествий,

Что ничто не казалось ей теперь совсем не возможным

Л. Кэрролл «Алиса в стране чудес»

Биоорганическая химия развивалась на границе между двумя науками: химией и биологией. В настоящее время к ним присоединились медицина и фармакология. Все эти четыре науки используют современные методы физических исследований, математического анализа и компьютерного моделирования.

В 1807 году Й.Я . Берцелиус предложил, что вещества, подобные оливковому маслу или сахару, которые распространены в живой природе, следует называть органическими.

К этому времени уже были известны многие природные соединения, которые впоследствии стали определять как углеводы, белки, липиды, алкалоиды.

В 1812 г. российский химик К.С.Кирхгоф превратил крахмал, нагревая его с кислотой, в сахар, названный позднее глюкозой.

В 1820 г. французский химик А. Браконно , обрабатывая белок желатину, получил вещество глицин, относящееся к классу соединений, которые позднее Берцелиус назвал аминокислотами .

Датой рождения органической химии можно считать опубликованную в 1828 году работу Ф.Велера , который впервые синтезировал вещество природного происхождения мочевину- из неорганического соединения цианата аммония.

В 1825 году физик Фарадей выделил бензол из газа, который использовали для освещения города Лондона. Присутствием бензола можно объяснить коптящее пламя лондонских фонарей..

В 1842 г. Н.Н. Зинин осуществил синтез анилина ,

В 1845 г. А.В. Кольбе, ученик Ф. Велера, синтезировал уксусную кислоту- несомненно природное органическое соединение - из исходных элементов(углерода, водорода, кислорода)

В 1854 г. П. М. Бертло нагревал глицерин со стеариновой кислотой и получил тристеарин, который оказался идентичным(одинаковым) с природным соединением, выделенным из жиров. Далее П.М. Бертло взял другие кислоты, которые не были выделены из природных жиров и получил соединения, очень похожие на природные жиры. Этим французский химик доказал, что можно получать не только аналоги природных соединений, но и создавать новые, похожие и одновременно отличающиеся от природных.

Многие крупные достижения органической химии второй половины Х1Х связаны с синтезом и изучением природных веществ.

В 1861 г. немецкий химик Фридрих Август Кекуле фон Страдонитц(называемый всегда в научной литературе просто Кекуле) опубликовал учебник, в котором определил органическую химию как химию углерода.


В период 1861- 1864 гг. российский химик А.М. Бутлеров создал единую теорию строения органических соединений, которая позволила перевести все имеющиеся достижения на единую научную основу и открыла путь к развитию науки органической химии.

В этот же период Д.И Менделеев. известный всему миру как ученый, который открыл и сформулировал периодический закон изменения свойств элементов, опубликовал учебник « Органическая химия». В нашем распоряжении есть его 2-е издание.(исправленное и дополненное, Издание Товарищества «Общественная польза», Санкт-Петербург, 1863г. 535 с)

В своей книге великий ученый четко определил связь органических соединений и процессов жизнедеятельности: « Многие из тех процессов и веществ, которые производятся организмами, мы можем воспроизвести искусственно, вне организма. Так, белковые вещества, разрушаясь в животных под влиянием кислорода, .поглощенного кровью, превращаются в аммиачные соли, мочевину, слизевый сахар, бензойную кислоту и др. вещества, обычно выделяющиеся мочой…Отдельно взятое каждое жизненное явление не есть следствие какой-то особой силы, но совершается по общим законам природы ». В те времена биоорганическая химия и биохимия еще не сформировались как

самостоятельные направления, вначале их объединяла физиологическая химия , но постепенно они выросли на основе всех достижений в две самостоятельные науки.

Наука биоорганическая химия изучает связь между строением органических веществ и их биологическими функциями, используя, в основном, методы органической, аналитический, физической химии, а также математики и физики

Главной отличительной чертой этого предмета является исследование биологической активности веществ в связи с анализом их химической структуры

Объекты изучения биоорганической химии : биологически важные природные биополимеры – белки, нуклеиновые кислоты, липиды, низкомолекулярные вещества – витамины, гормоны, сигнальные молекулы, метаболиты – вещества участвующие в энергетическом и пластическом обмене веществ, синтетические лекарственные препараты.

К основным задачам биоорганической химии относятся:

1. Разработка методов выделения, очистки природных соединений, использование методов медицины для оценки качества препарата (например, гормона по степени его активности);

2. Определение строения природного соединения. Используются все методы химии: определение молекулярной массы, гидролиз, анализ функциональных групп, оптические методы исследования;

3. Разработка методов синтеза природных соединений;

4. Изучение зависимости биологического действия от строения;

5.Выяснение природы биологической активности, молекулярных механизмов взаимодействия с различными структурами клетки или с ее компонентами.

Развитие биоорганической химии на протяжении десятилетий связано с именами российских ученых: Д.И.Менделеева, А.М. Бутлерова, Н.Н.Зинина, Н.Д.Зелинского А.Н.Белозерского Н.А.Преображенского М.М.Шемякина, Ю.А. Овчинникова.

Основоположниками биоорганической химии за рубежом являются ученые, совершившие многие крупнейшие открытия: строение вторичной структуры белка (Л. Полинг), полный синтез хлорофилла, витамина В 12 (Р. Вудворд), использование ферментов в синтезе сложных органических веществ. в том числе, гена (Г. Корана) и другие

На Урале в г. Екатеринбурге в области биоорганической химии с 1928 по 1980 гг. работал заведующий кафедрой органической химии УПИ академик И.Я.Постовский, известный как один из создателей в нашей стране научного направления поиска и синтеза лекарственных препаратов и автор ряда препаратов(сульфаниламидов, противоопухолевых, противолучевых, противотуберкулезных).. Его исследования продолжают ученики, которые работают под руководством академиков О.Н.Чупахина, В.Н. Чарушина в УГТУ-УПИ и в Институте органического синтеза им. И.Я. Постовского Российской Академии Наук.

Биоорганическая химия тесно связана с задачами медицины, необходима для изучения, понимания биохимии, фармакологии, патофизиологии, гигиены. Весь научный язык биоорганической химии, принятые обозначения и используемые методы не отличаются от органической химии, которую вы изучали в школе