Зависимость скорости химической реакции от температуры. Правило вант-гоффа. Температурный коэффициент скорости реакции. Энергия активации, энтропия активации реакции. Уравнение аррениуса. Зависимость скорости от температуры Две химические реакции при темп

Повышение температуры ускоряет все химические реакции. Первоначально Вант-Гофф экспериментально установил, что при увеличении температуры на каждые 10 градусов скорость возрастает в 2 ¸ 4 раза (правило Вант-Гоффа). Это соответствует степенной зависимости скорости от температуры:

где Т > Т 0 , g - температурный коэффициент Вант-Гоффа.

Однако это уравнение теоретически не обосновано; экспериментальные данные лучше описываются экспоненциальной функцией (уравнение Аррениуса):

,

где А - предэкспоненциальный множитель, не зависящий от Т, Е а - энергия активации химической реакции (кДж/моль), R - универсальная газовая постоянная.

Уравнение Аррениуса обычно записывают для константы скорости:

.

Это уравнение теоретически обосновывается методами статистической физики. Качественно это обоснование состоит в следующем: так как реакции идут в результате беспорядочных столкновений молекул, то эти столкновения характеризуются практически непрерывным набором энергий от самых маленьких до очень больших. Очевидно, что реакция произойдет только тогда, когда молекулы соударяются с энергией, достаточной для разрыва (или существенного растяжения) некоторых химических связей. Для каждой системы существует порог энергии Е а, начиная с которого энергия достаточна для протекания реакции, – этому механизму как раз и соответствует кривая 1 на рисунке 5.1. Так как соударения происходят с частотой, зависящей от температуры по экспоненциальному закону, то и получаются формулы 5.9 и 5.10. Тогда предэкспоненциальные множители А и k 0 представляют некоторую характеристику полного числа столкновений, а член - долю результативных столкновений.

Анализ экспериментальных данных проводят, пользуясь логарифмической формой уравнения Аррениуса:

.

График строят в так называемых аррениусовских координатах
(ln k - ),рис. 7.2; из графика находят k o и Е а.

При наличии экспериментальных данных для двух температур k o и Е а легко теоретически найти:

; ;

Скорость химической реакции в значительной мере зависит от энергии активации. Для подавляющего большинства реакций она лежит в пределах от 50 до 250 кДж/моль. Реакции, для которых
Е а > 150 кДж/моль, при комнатной температуре практически не протекают.

Пример 1. Сложная необратимая реакция 2N 2 O 5 = 4NO 2 + O 2 является реакцией первого порядка. Как изменится ее скорость при увеличении давления в 5 раз?

Решение. Кинетическое уравнение этой реакции в общем виде: V = k· a . Так как реакция сложная, то возможно, что a ¹ 2. По условию порядок реакции
a = 1. Для газовых реакций роль концентрации выполняет давление. Поэтому
V = kP, и если Р 1 = 5Р, то V 1 /V = 5, т.е. скорость возрастает в пять раз.


Найти константу скорости, порядки по реагентам и записать кинетическое уравнение.

Решение. Кинетическое уравнение для скорости этой реакции в общем виде:

V = k a b .

Данные таблицы позволяют найти порядки реакции по NO (a) и H 2 (b) методом понижения порядка реакции, т.е. анализируя опыты, в которых один из реагентов имеет неизменную концентрацию. Так, = 0,01 в первом и втором столбцах, при этом изменяется.

. (частный порядок по H 2).

Для второго и третьего столбцов, наоборот, одинакова, а - различны, поэтому:

(частный порядок по NO).

Так как a и b совпадают со стехиометрическими коэффициентами, то реакция может быть простой. Константа скорости может быть найдена по данным каждого столбца:

Таким образом, кинетическое уравнение: V = 2,5 . 10 3 2 .

Суммарный (общий) порядок этой реакции (a + b) равен 3.

Пример 3. Скорость реакции А + 3В = АВ 3 определяется кинетическим уравнением V = k[А]·[B]. Определите общий порядок реакции. Какая это реакция – простая или сложная? Во сколько раз увеличится скорость реакции при увеличении концентраций в 3 раза?

Решение. Порядок реакции определяется суммой показателей степеней реагентов в кинетическом уравнении. Для данной реакции общий порядок равен двум (1 +1).

Если бы данная реакция была простой, то по закону действующих масс

V = k[А] 1 . [B] 3 и общий порядок был бы равен (1+ 3) = 4, т.е. показатели степеней в кинетическом уравнении не совпадают со стехиометрическими коэффициентами, следовательно, реакция сложная и проходит в несколько стадий.

При увеличении концентраций реагентов в 3 раза: V 1 = k·3[A]·3[B] = 3 2 V, то есть скорость увеличится в 3 2 = 9 раз.

Пример 4. Определить энергию активации реакции и ее температурный коэффициент, если при 398 и 600 0 C константы скорости равны, соответственно, 2,1×10 -4 и 6,25×10 -1 .

Решение. Е а по двум значениям может быть рассчитана по формуле 5.12:

192б33 Дж/моль.

Температурный коэффициент находим из выражения (5.8), т.к. V µ k:

.

Катализ

Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ.Катализатор - вещество, которое многократно участвует в промежуточных стадиях реакции, но выходит из нее химически неизменным.

Например, для реакции А 2 + В 2 = 2АВ

участие катализатора К можно выразить уравнением

А 2 + К + В 2 ® А 2.... К + В 2 ® А 2 ...К...В 2 ® 2АВ + К.

Эти уравнения можно представить кривыми потенциальной энергии (рис. 5.2.).

Рис. 5.2. Энергетическая схема хода реакции

с катализатором и без катализатора

Из рисунка 5.2 видно, что:

1) катализатор уменьшает энергию активации, изменяя механизм реакции, – она протекает через новые стадии, каждая из которых характеризуется невысокой энергией активации;

2) катализатор не изменяет DН реакции (а также DG, DU и DS);

3) если катализируемая реакция обратимая, катализатор не влияет на равновесие, не изменяет константу равновесия и равновесные концентрации компонентов системы. Он в равной степени ускоряет и прямую, и обратную реакции, тем самым ускоряя время достижения равновесия.

Очевидно, в присутствии катализатора энергия активации реакции снижается на величину DЕ к. Поскольку в выражении для константы скорости реакции (уравнение 5.10) энергия активации входит в отрицательный показатель степени, то даже небольшое уменьшение Е а вызывает очень большое увеличение скорости реакции: .

Влияние катализатора на снижение Е а можно показать на примере реакции распада иодида водорода:

2HI = H 2 + I 2 .

Таким образом, для рассматриваемой реакции уменьшение энергии

активации на 63 кДж, т.е. в 1,5 раза, соответствует повышению скорости реакции при 500 К более чем 10 6 раз.

Следует отметить, что предэкспоненциальный множитель каталитической реакции k 0 1 не равен k 0 и обычно значительно меньше, однако соответствующее уменьшение скорости далеко не компенсирует её увеличения за счёт Е а.

Пример 5. Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, а с катализатором - 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при 25 0 С, а предэкспоненциальный множитель в присутствии катализатора уменьшается в 10 раз.

Решение. Обозначим энергию активации реакции без катализатора через Е а, а в присутствии катализатора - через Еа 1 ; соответствующие константы скоростей реакций обозначим через k и k 1 . Используя уравнение Аррениуса (5.9) (см. раздел 5.3) и принимая k 0 1 /k 0 = 10, находим:

Отсюда

Окончательно находим:

Таким образом, снижение энергии активации катализатором на 25,1 кДж привело к увеличению скорости реакции в 2500 раз, несмотря на 10-кратное уменьшение предэкспоненциального множителя.

Каталитические реакции классифицируются по типу катализаторов и по типу реакций. Так, например, по агрегатному состоянию катализаторов и реагентов катализ подразделяется на гомогенный (катализатор и реагент образуют одну фазу) и гетерогенный (катализатор и реагенты – в разных фазах, имеется граница раздела фаз между катализатором и реагентами).

Примером гомогенного катализа может быть окисление СО до СО 2 кислородом в присутствии NO 2 (катализатор). Механизм катализа можно изобразить следующими реакциями:

CO (г) + NO 2 (г) ® CO 2 (г) + NO (г) ,

2NO (г) + O 2 (г) ® 2NO 2 (г) ;

и катализатор (NO 2) снова участвует в первой реакции.

Аналогично этому может быть катализирована реакция окисления SO 2 в SO 3 ; подобная реакция применяется в производстве серной кислоты "нитрозным" способом.

Примером гетерогенного катализа является получение SO 3 из SO 2 в присутствии Pt или V 2 O 5:

SO 2 (г) + O 2 (г) ® SO 3 (г) .

Эта реакция также применяется в производстве серной кислоты ("контактный" метод).

Гетерогенный катализатор (железо) применяется также в производстве аммиака из азота и водорода и во многих других процессах.

Эффективность гетерогенных катализаторов обычно намного больше, чем гомогенных. Скорость каталитических реакций в случае гомогенного катализатора зависит от его концентрации, а в случае гетерогенного - от его удельной поверхности (то есть дисперсности) - чем она больше, тем больше скорость. Последнее связано с тем, что каталитическая реакция идет на поверхности катализатора и включает в себя стадии адсорбции (прилипание) молекул реагентов на поверхности; по окончании реакции ее продукты десорбируются. Для увеличения поверхности катализаторов их измельчают или получают специальными способами, при которых образуются очень тонкодисперсные порошки.

Приведенные примеры одновременно являются примерами окислительно-восстановительного катализа. В этом случаев качестве катализаторов обычно выступают переходные металлы или их соединения (Mn 3+ , Pt, Au, Ag, Fe, Ni, Fe 2 O 3 и др.).

В кислотно-основном катализе роль катализатора выполняют Н + , ОН - и другие подобные частицы - носители кислотности и основности. Так, реакция гидролиза

CH 3 COOCH 3 + H 2 O CH 3 COOH + CH 3 OH

ускоряется примерно в 300 раз при добавлении любой из сильных кислот: HCl, HBr или HNO 3 .

Большое значение катализ имеет в биологических системах. В этом случае катализатор называют ферментом. Эффективность действия многих ферментов намного больше, чем обычных катализаторов. Например, для реакции связывания азота в аммиак

N 2 + 3H 2 = 2NH 3

в промышленности используется гетерогенный катализатор в виде губчатого железа с добавками оксидов и сульфатов металлов.

При этом реакция проводится при Т » 700 К и Р » 30 МПа. Этот же синтез идет в клубеньках бобовых растений под действием ферментов при обычных Т и Р.

Каталитические системы небезразличны к примесям и добавкам. Некоторые из них увеличивают эффективность катализа, как например, в вышеприведенном примере катализа синтеза аммиака железом. Такие добавки в катализатор называются промоторами (оксиды калия и алюминия в железе). Некоторые примеси, наоборот, подавляют каталитическую реакцию ("отравляют" катализатор), это каталитические яды. Например, синтез SO 3 на Pt-катализаторе очень чувствителен к примесям, содержащим сульфидную серу; сера отравляет поверхность платинового катализатора. И напротив, катализатор на основе V 2 O 5 малочувствителен к таким примесям; честь разработки катализатора на основе оксида ванадия принадлежит российскому учёному Г.К. Борескову.

для студентов направления 6070104 «Морской и речной транспорт»

специальности

«Эксплуатация судового электрооборудования и средств автоматики»,

направления 6.050702 «Электромеханика» специальности

«Электрические системы и комплексы транспортных средств»,

«Электромеханические системы автоматизации и электропривод»

дневной и заочной форм обучения

Тираж_____экз. Подписано к печати_____________.

Заказ №________. Объем 1,08 п.л.

Изд-во “Керченский государственный морской технологический университет”

98309 г. Керчь, Орджоникидзе, 82.

Правило Вант- Гоффа. Уравнение Аррениуса.

Согласно эмпирическому правилу Вант - Гоффа, сформулированному около 1880г., скорость большинства реакций увеличивается в 2-4 раза при повышении температуры на 10 градусов, если реакция проводится при температуре, близкой к комнатной. Например, время полуразложения газообразного оксида азота (V) при 35°С составляет около 85мин., при 45°С-около 22мин. и при 55°С - около 8мин.

Мы уже знаем, что при любой постоянной температуре скорость реакции описывается эмпирическим кинетическим уравнением, представляющим в большинстве случаев (за исключением реакции с весьма сложным механизмом) произведение константы скорости на концентрации реагентов в степенях, равных порядкам реакции. Концентрации реагентов практически не зависят от температуры, порядки, как показывает опыт,- тоже. Следовательно, за резкую зависимость скорости реакции от температуры ответственны константы скоростей. Зависимость константы скорости от температуры принято характеризовать температурным коэффициентом скорости реакции , которыйпредставляет собой отношение констант скорости при температурах, отличающихся на 10 градусов

и который по правилу Вант - Гоффа равен приблизительно 2-4.

Попытаемся объяснить наблюдаемые высокие значения температурных коэффициентов скоростей реакции на примере гомогенной реакции в газовой фазе с позиций молекулярно-кинетической теории газов. Чтобы молекулы взаимодействующих газов прореагировали друг с другом, необходимо их столкновение, при котором одни связи рвутся, а другие образуются, в результате чего и появляется новая молекула - молекула продукта реакции. Следовательно, скорость реакции зависит от числа столкновений молекул реагентов, а число столкновений, в частности, - от скорости хаотического теплового движения молекул. Скорость молекул и соответственно число столкновений растут с температурой. Однако только повышение скорости молекул не объясняет столь быстрого роста скоростей реакций с температурой. Действительно, согласно молекулярно-кинетической теории газов средняя скорость молекул пропорциональна квадратному корню из абсолютной температуры, т.е, при повышении температуры системы на 10 градусов, скажем, от 300 до 310К, средняя скорость молекул возрастет лишь в 310/300 = 1,02 раза - гораздо меньше, чем требует правило Вант -Гоффа.

Таким образом, одним только увеличением числа столкновений нельзя объяснить зависимость констант скоростей реакции от температуры. Очевидно, здесь действует еще какой-то важный фактор. Чтобы вскрыть его, обратимся к более подробному анализу поведения большого числа частиц при различных температурах. До сих пор мы говорили о средней скорости теплового движения молекул и ее изменении с температурой, но если число частиц в системе велико, то по законам статистики отдельные частицы могут иметь скорость и соответственно киетическую энергию, в большей или меньшей степени отклоняющуюся от среднего значения для данной температуры. Эта ситуация изображена на рис. (3.2), который

показывает, как распределены части-


3.2. Распределение частиц по кинетической энергии при различных температурах:

2-Т 2 ; 3-Т 3 ; Ti

цы по кинетической энергии при определенной температуре. Рассмотрим, например, кривую 1, отвечающую температуре Ti. Общее число частиц в системе (обозначим его N 0) равно площади под кривой. Максимальное число частиц, равное Ni, обладает наиболее вероятной для данной температуры кинетической энергией Е 1 . Более высокую энергию будут иметь частицы, число которых равно площади под кривой справа от вертикали Е 1 , а площадь слева от вертикали отвечает частицам с энергией меньше Е

Чем больше кинетическая энергия отличается от средней, тем меньше частиц обладают ею. Выберем, например, некоторую энергию Е а, большую чем Е 1 }. При температуре Ti число частиц, энергия которых превышает величину Е а, составляет лишь малую часть от общего числа частиц - это зачерненная площадь под кривой 1 справа от вертикали Е а. Однако при более высокой температуре Т 2 уже больше частиц обладает энергией, превышающей Е а (кривая 2), а при дальнейшем повышении температуры до Т 3 (кривая 3) энергия Е а оказывается близкой к средней, и такой запас кинетической энергии будет иметь уже около половины всех молекул.

Скорость реакции определяется не общим числом столкновений молекул в единицу времени, а той его частью, в которой принимают участие молекулы, кинетическая энергия которых превышает некоторый предел Е а, называемый энергией активации реакции. Это становится вполне понятным, если мы вспомним, что для успешного протекания элементарного акта реакции необходимо, чтобы при столкновении произошел разрыв старых связей и были бы созданы условия для образования новых. Конечно, на это требуется затратить энергию – нужно, чтобы сталкивающиеся частицы обладали достаточным ее запасом.

Шведский ученый С.Аррениус установил, что возрастание скорости большинства реакций при повышении температуры происходит нелинейно (в отличие от правила Вант - Гоффа). Аррениус установил, что в большинстве случаев константа скорости реакции подчиняется уравнению

LgK=lgA - , (3.14)

которое получило название уравнения Аррениуса .

Е а - энергия активации (см. ниже)

R - молярная газовая постоянная, равная 8,314 Дж/моль۰К,

Т - абсолютная температура

А - постоянная или очень мало зависящая от температуры величина. Ее называют частотным фактором, так как она связана с частотой молекулярных столкновений и вероятностью того, что столкновение происходит при ориентации молекул, благоприятной для реакции. Как видно из (3.14) при увеличении энергии активации Е а константа скорости К уменьшается. Следовательно, скорость реакции уменьшается при повышении ее энергетического барьера (см. ниже).

Закон действующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии. Закон действующих масс сформулирован в 1864-1867 гг. К. Гульдбергом и П. Вааге. Согласно этому закону скорость, с которой вещества реагируют друг с другом, зависит от их концентрации. Закон действующих масс используют при различных расчетах химических процессов. Он позволяет решить вопрос, в каком направлении возможно самопроизвольное течение рассматриваемой реакции при заданном соотношении концентраций реагирующих веществ, какой выход нужного продукта может быть получен.

Вопрос 18.Правило Вант-Гоффа.

Правило Вант-Гоффа - эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °С до 100 °С). Вант-Гофф на основании множества экспериментов сформулировал следующее правило: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличиваеться в два - четыре раза. Уравнение, которое описывает это правило следующее:

V = V0 * Y(T2 − T1) / 10

где V-скорость реакции при данной температуре(T2), V0-скорость реакции при температуре T1, Y-температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиватся в 2 раза при повышении температуры на 10 градусов).

Следует помнить, что правило Вант-Гоффа ограниченную область применимости. Ему не подчиняются многие реакции, например реакции, происходящие при высоких температурах, очень быстрые и очень медленные реакции. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса.

V = V0 * Y(T2 − T1) / 10

Вопрос 19.Энегрия активации.

Энергия активации в химии и биологии - минимальное количество энергии, которую требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Термин введён Сванте Августом Аррениусом в 1889. Типичное обозначение энергии реакции Ea.

Энергия активации в физике -- минимальное количество энергии, которое должны получить электроны донорной примеси, для того чтобы попасть в зону проводимости.

В химической модели, известной как Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

Молекулы должны обладать необходимой энергией (энергией активации). В процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией. То есть молекулы должны преодолеть энергетический барьер; если этого не произойдёт, реакция не начнётся.

Молекулы должны быть правильно ориентированы друг относительно друга.

При низкой (для определённой реакции) температуре большинство молекул обладают энергией меньшей, чем энергия активации, и неспособны преодолеть энергетический барьер. Однако в веществе всегда найдутся отдельные молекулы, энергия которых значительно выше средней. Даже при низких температурах большинство реакций продолжают идти. Увеличение температуры позволяет увеличить долю молекул, обладающих достаточной энергией, чтобы преодолеть энергетический барьер. Таким образом повышается скорость реакции.

Математическое описание

Уравнение Аррениуса устанавливает связь между энергией активации и скоростью протекания реакции:

k - константа скорости реакции, A - фактор частоты для реакции, R - универсальная газовая постоянная, T - температура в кельвинах.

С повышением температуры растёт вероятность преодоления энергетического барьера. Общее эмпирическое правило: повышение температуры на 10 К удваивает скорость реакции

Переходное состояние

Соотношение между энергией активации (Ea) и энтальпией (энтропией) реакции (ΔH) при наличии и при отсутствии катализатора. Наивысшая точка энергии представляет собой энергетический барьер. В присутствии катализатора энергии, которая необходима для начала реакции, требуется меньше.

Переходное состояние - состояние системы, при котором уравновешены разрушение и создание связи. В переходном состоянии система находится в течение небольшого (10-15 с) времени. Энергия, которую необходимо затратить, чтобы привести систему в переходное состояние, называется энергией активации. В многоступенчатых реакциях, которые включают в себя несколько переходных состояний, энергия активации соответствует наибольшему значению энергии. После преодоления переходного состояния молекулы вновь разлетаются с разрушением старых связей и образованием новых или с преобразованием исходных связей. Оба варианта возможны, так как происходят с высвобождением энергии (это хорошо видно на рисунке, поскольку оба положения лежат энергетически ниже энергии активации). Существуют вещества, способные уменьшить энергию активации для данной реакции. Такие вещества называют катализаторами. Биологи же такие вещества называют ферментами. Интересно, что катализаторы таким образом ускоряют ход реакции, самостоятельно в ней не участвуя.

Билет№2

1) ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ: Основания, оксиды, кислоты, соли.ёё

2) Be – бериллий.

Химические свойства: бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют еще более высокой температуры.

Физические свойства: Бериллий - относительно твердый, но хрупкий металл серебристо-белого цвета. Имеет высокий модуль упругости - 300 ГПа (у сталей - 200-210 ГПа). На воздухе активно покрывается стойкой оксидной плёнкой

Магний (Mg). Физические свойства: Магний - металл серебристо-белого цвета с гексагональной решёткой, пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2.

Химические свойства: Смесь порошкового магния с перманганатом калия KMnO4 - взрывчатое вещество

Раскаленный магний реагирует с водой:

Mg (раск.) + Н2О = MgO + H2;

Щелочи на магний не действуют, в кислотах он растворяется легко с выделением водорода:

Mg + 2HCl = MgCl2 + H2;

При нагревании на воздухе магний сгорает, с образованием оксида, также с азотом может образовываться небольшое количество нитрида:

2Mg + О2 = 2MgO;

3Mg + N2 = Mg3N2

Билет№3. Растворимость - способность вещества образовывать с другими ​веществами однородные системы - растворы, в которых вещество ​находится в виде отдельных атомов, ионов, молекул или частиц.

Насыщенный раствор - раствор, в котором растворённое вещество ​при данных условиях достигло максимальной концентрации и больше не ​растворяется. Осадок данного вещества находится в равновесном ​состоянии с веществом в растворе.

Ненасыщенный раствор - раствор, в котором концентрация ​растворенного вещества меньше, чем в насыщенном растворе, и в котором ​при данных условиях можно растворить еще некоторое его количество.

Перенасыщенные растворы - ​растворы, характеризующиеся тем, что содержание в них растворенного ​вещества больше соответствующего его нормальной растворимости при ​данных условиях.



Зако́н Ге́нри - закон, по которому при постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором. Закон пригоден лишь для идеальных растворов и невысоких давлений.

Закон Генри записывается обычно следущим образом:

Где р - парциальное давление газа над раствором,

с - концентрация газа в растворе в долях моля,

к - коэффициент Генри.

Экстракция (от позднелат. extractio - извлечение), экстрагирование, процесс разделения смеси жидких или твёрдых веществ с помощью избирательных (селективных) растворителей (экстрагентов).

Билет№4. 1)Массовая доля это отношение массы растворенного вещества к общей массе раствора. Для бинарного раствора

ω(x) = m(x) / (m(x) + m(s)) = m(x) / m

где ω(х) - массовая доля растворенного вещества Х

m(x) - масса растворенного вещества Х, г;

m(s) - масса растворителя S, г;

m = m(x) + m(s) - масса раствора, г.

2)Алюми́ний - элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13.



Нахождение в природе:

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al со следами 26Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей.

Получение:

Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Алюминотермия - способ получения металлов, неметаллов (а также сплавов) восстановлением их оксидов металлическим алюминием.

Билет№5. РАСТВОРЫ НЕЭЛЕКТРОЛИТОВ , бинарные или многокомпонентные мол. системы, состав к-рых может изменяться непрерывным образом (по крайней мере, в нек-рых пределах). В отличие от растворов электролитов, в растворы неэлектролитов (мол. р-рах) заряженные частицы в сколько-нибудь заметных концентрациях отсутствуют. растворы неэлектролитов могут быть твердыми, жидкими и газообразными.

Первый закон Рауля

Первый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом:

Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.

Второй закон Рауля

Тот факт, что давление паров над раствором отличается от давления паров над чистым растворителем, существенно влияет на процессы кристаллизации и кипения. Из первого закона Рауля выводятся два следствия, касающиеся понижения температуры замерзания и повышения температуры кипения растворов, которые в объединённом виде известны как второй закон Рауля.

Криоскопия (от греч. kryos - холод и scopeo - смотрю) - измерение понижения температуры замерзания раствора по сравнению с чистым растворителем.

Правило Вант-Гоффа -При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два - четыре раза

Жёсткость воды - совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния.

Билет№6. РАСТВОРЫ ЭЛЕКТРОЛИТОВ, содержат в заметных концентрациях ионы-катионы и анионы, образующиеся в результате электролитической диссоциации молекул растворенного в-ва.

Сильные электролиты - химические соединения, молекулы которых в ​разбавленных растворах практически полностью диссоциированы на ионы.

Слабые электролиты - химические соединения, молекулы которых даже в ​сильно разбавленных растворах не полностью диссоциированы на ионы, ​которые находятся в динамическом равновесии с недиссоциированными ​молекулами.

Электроличиская диссоциация -процесс распада электролита на ионы при растворении его в полярном растворителе илит при плавлении.

Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:

Р-элементы 4 группы – углерод,кремний,германии,олово и свенец.

Билет№7. 1)Электролитическая диссоциация – это распад вещества на ионы под действием полярных молекул растворителя.

рН = -lg.

Буферные растворы – это растворы при добавлении к которым кислот или щелочей их pH меняется незначительно.

Угольная кислота образует:

1) средние соли (карбонаты),

2) кислые (гидрокарбонаты).

Карбонаты и гидрокарбонаты термически нестойки:

СаСОз = СаО + СО2^,

Са(НСО3)2 = СаСО3v +СО2^ + Н2О.

Карбонат натрия (кальцинированная сода) – является одним из главных продуктов химической промышленности. В водном растворе он гидролизуется по реакции

Nа2СО3 > 2Nа+ + СО3-2,

СО3-2 + Н+-ОН- - НСО3- + ОН-.

Гидрокарбонат натрия (питьевая сода) – широко используется в пищевой промышленности. Вследствие гидролиза раствор также имеет щелочную среду

NаНСО3 > Nа+ + НСО3-,НСО3- + Н-ОН - Н2СО3 + ОН-.

Кальцинированная и питьевая сода взаимодействуют с кислотами

Nа2СО3 + 2НСl - 2NаСl + СО2^ + Н2О,

2Nа+ + СО3-2 + 2Н+ + 2Сl- - 2Nа+ + 2Сl- + СО2^ + Н2О,

СО3-2 + 2Н+ - СО2^ + Н2О;

NаНСО3 + СН3СООН - СН3СООNа + СО2^ + Н2О,

Nа+ + НСО3- + СН3СООН - СН3СОО- + Nа+ + СО2^ + Н2О,

НСО3- + СН3СООН - СН3СОО- + СО2^ + Н2О.

Билет№8. 1)_ионно-обменные в растворах:

Na2CO3 + H2SO4 → Na2SO4 + CO2 +H2O

2Na + CO3 + 2H + SO4 → 2Na + SO4 + CO2 + H2O

CO3 + 2H → CO2 + H2O

С выделение газа: Na2CO3 + 2HCl = CO2 + H2O + 2NaCl

2) Химические свойства Азота. Только с такими активными металлами, как литий, кальций, магний, Азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов Азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения Азота с кислородом N2O, NO, N2O3, NO2 и N2O5 .

Физические свойства Азота. Азот немного легче воздуха; плотность 1,2506 кг/м3 (при 0°С и 101325 н/м2 или 760 мм рт. ст.), tпл -209,86°С, tкип -195,8°С. Азот сжижается с трудом: его критическая температуpa довольно низка (-147,1°С) а критическое давление высоко 3,39 Мн/м2 (34,6 кгс/см2); плотность жидкого Азота 808 кг/м3. В воде Азот менее растворим, чем кислород: при 0°С в 1 м3 Н2О растворяется 23,3 г Азота. Лучше, чем в воде, Азот растворим в некоторых углеводородах.

Билет№9. Гидролиз (от греч. hydro – вода, lysis – разложение) означает разложение вещества водой. Гидролизом соли называют обратимое взаимодействие соли с водой, приводящее к образованию слабого электролита.

Вода хотя и в малой степени, но диссоциирует:

H 2 O H + + OH – .

Хлорид натрия H2O H+ + OH–,

Na+ + Cl– + H2O Na+ + Cl– + H+ + OH–,

NaCl + H2O (нет реакции) Нейтральная

Kарбонат натрия + НОН + OН–,

2Na+ + + H2O + OН–,

Na2CО3 + H2O NaHCО3 + NaOН Щелочная

Хлорид алюминия Al3+ + НОН AlOH2+ + Н+,

Al3+ + 3Cl– + H2O AlОH2+ + 2Cl– + H+ + Cl–,

AlCl3 + H2O AlOHCl2 + HCl Kислая