Система вентиляции и кондиционирования в чистом помещении. Что такое "чистое помещение"? Наиболее распространенные схемы

Правильная вентиляция чистых помещений достигается при соблюдении определенных условий в отделке и продуманного выбора оборудования. Чистой называется комната, где осуществляется контроль за концентрацией взвешенных в воздухе веществ.

Помещение спроектированное и построенное с учетом минимальных поступлений и выделений частиц, позволяющее контролировать температурные изменения, влажность и, в особых случаях, давление.

Общие требования вентиляции

Системы вентиляции обеспечивают подачу необходимого количества воздуха по санитарным нормам, удаляют вредные вещества. Фильтруют поток на входе для достижения нужного класса чистоты , поддерживая заданные параметры микроклимата.

По каждому фактору оцениваются объемы воздухообмена еще на этапе проектирования. При затребовании большей кратности этого параметра в ущерб очистке, производится перерасчет для его снижения.

Для чего учитывается:

  • Время восстановления после внесения загрязнений
  • Скорость движения воздуха
  • Температура и влажность
  • Удаление вредных примесей

Основные типы вентиляционных систем

Исходя из требований к классу чистоты, выбирается система вентиляции чистых помещений из следующих типов:

  • Прямоточная
  • С рециркуляцией
  • Прямоточная с рекуперацией тепла
  • С локальными зонами
  • Двухуровневая

Выбор обосновывается конкретными факторами, с учетом капитальных затрат и условий экономии энергии. Локальные установки, как правило, имеют вентилятор и могут располагаться в самом помещении или вне его. Дополняются НЕРА фильтрами, по необходимости химическими, нейтрализующими запахи и другими.

Прямоточная система

Схема простая, подается воздух с улицы, затем он проходит все основные циклы обработки. Экономически не выгодно, по причине больших энергозатрат и большими затратами на фильтрационные расходные материалы.

С рециркуляцией

Одноуровневая система, включает в себя кондиционирование для чистых помещений с возвратом воздуха из очищенной зоны на обработку. Энергозатратность средняя.

Прямоточная с рекуперацией тепла

Пропускаемый в данном варианте через фильтры воздушный поток по замкнутой схеме возвращает тепло в помещения.

Двухуровневая

Предъявляемые требования вентиляция чистого помещения в этой системе оправдывает лучше всего. Если кондиционеров несколько, как и обслуживающих комнат, идет разбивка на центральный (только в него поступает уличный воздух) и рециркуляционные кондиционеры.

Местная с локальными зонами

Используется для локализации зон с повышенными требованиями по санитарной обработке. Чаще всего монтируются модули вентиляторов с фильтрами, иногда специальные установки рециркуляции.

Баланс воздухообмена

По нормам в технологически чистых помещениях должна применяться вентиляция воздуха, для сбалансированного обмена нужны вытяжки, местная и общеобменная, фильтры. Регулирование ресурсов происходит с помощью клапанов , корректирующих воздушные потоки.

Системы очистки в помещениях, требующих повышенной степени обеззараживания атмосферы, ставятся многоступенчатые. В специальной таблице указывается взаимосвязь классов чистоты со степенью фильтрации. Более тонкие модели защищаются на входе крупными, которые не пропустят насекомых.
Финишная преграда монтируется на стене, потолке чистой зоны, этого требует технология. Как и то, что воздуховоды не должны выделять мелких частиц, лучше выбирать из нержавеющей стали.

Подведем итог, в деле по вентилированию помещений есть типовые решения и индивидуальные. Полностью рассчитать, какой вариант стоит выбрать, могут только специалисты. Установка под руководством профессионалов убережет время, нервы и возможно чье-то здоровье.

Видео о строительстве

Навигация по тексту:

Вентиляция в таких комнатах, как операционная, необходима для поддержания санитарно-гигиенических условий. Чистые помещения – это такая среда, где отсутствуют микроорганизмы и вредные вещества, пагубно влияющие на здоровье человека. Именно в таких условиях изготавливают лекарственные средства, оперируют и лечат больных, переливают кровь, производят часы и оптику, собирают микроэлектронику, занимаются обработкой еды. Обеспечение и поддержание санитарно-гигиенических условий, а также контролируемого климата в таких помещениях играют особо важную роль. Благоприятный микроклимат осуществляется с помощью вентиляционных систем. При этом вентиляция в чистых помещениях не должна быть стандартной. Выбор такого климатического устройства зависит от функциональной нагрузки, размера и класса чистоты. Последнее представляет собой определенные требования по уровню содержания частиц и примесей в воздухе.

Чистые помещения разделяются на три класса, различающиеся по количеству микроорганизмов на единицу объема:

Вентиляция в чистых помещениях уменьшает распространение микроорганизмов, подает чистый воздух, предотвращает поступление загрязненного воздуха, контролирует уровень температуры и влажности. Наиболее эффективной системой раздачи воздуха считается устройство фильтров по всему периметру площади потолка. Как правило, чистые помещения делят на четыре основных вида, в каждом из которых по-разному осуществляется поток воздуха:

  • Чистое помещение с многонаправленным потоком воздуха. Этого можно добиться с помощью обычной вентиляции, которая отличается классическим методом подачи через распределители воздуха.
  • Чистое помещение с однонаправленным потоком воздуха. Этот вид предполагает подачу чистого воздуха с помощью системы фильтров с сохранением направления движения. Такой поток также называют «ламинарным», при котором обеспечивается большое значение воздухообменов с малой скоростью (0,3 м/сек через всю зону).
  • Чистое помещение со смешанным потоком. В местах, где продукт подвергается загрязнению, устанавливается лабораторный шкаф с однонаправленным потоком.

Системы приточной и вытяжной вентиляции чистого помещения

К чистым помещениям относятся те, где собирают микроэлектронику, изготавливают лекарства, производят часы. В этих помещениях микроклимат должен быть стабильным
Приточная вентиляция чистого помещения осуществляет подачу чистого воздуха в помещение с заданными параметрами для благоприятного микроклимата. Такая система вентиляции обрабатывает и очищает воздух перед подачей, регулирует уровень влажности и температуры. Вытяжная вентиляция чистого помещения удаляет загрязненный воздух, обеспечивает необходимую кратность воздухообмена, поддерживает в определенных местах помещения отрицательное давление.

Специалисты нашей компании «Вент-м» имеют необходимые знания и практические навыки для работ по установке вентиляции в чистых помещениях. Учитывая все особенности таких помещений, они выбирают определенный вид устройства и устанавливают его на высоком уровне качества.

Вентиляция чистых помещений является одной из важнейших задач поддержания рабочей среды. Почему же вентиляция играет такую большую роль? Именно очистка воздуха позволяет регулировать состояние помещения, нормы которого прописаны в ГОСТе. Существует несколько критериев, по которым помещение относят к одному из девяти классов чистоты, каждый из которых характеризуется степенью очистки воздуха от примесей. Поэтому в технологически чистых помещениях должна применяться вентиляция на нескольких уровнях.

Каким должен быть воздух в чистом помещении?

Пыль и бактерии содержатся в любом воздухе в виде аэрозольных частиц. Вентиляция чистых помещений позволяет поддерживать максимально разрешенное количество пыли и бактерий для данного класса помещений.

Сквозняк, сухость воздуха или его повышенная влажность - враги чистого помещения. Поэтому система вентиляции регулирует состояние воздуха, создавая оптимальные условия для работы в этой среде.

Подача воздуха регулируется автоматикой, а значит перепадов давления, вызванных переходом воздуха из одного помещения в другое, быть не должно. Таким образом, стерильность и герметичность помещений поддерживается автоматически.

Система очистки воздуха в чистых помещениях - это сложная автоматизированная группа фильтров. Фильтры воздуха чистых помещений делятся на фильтры грубой очистки, тонкой очистки и микрофильтры.

Воздух проходит фильтрацию от грубых частиц, тонкую очистку, а потом сверхтонкую очистку в микрофильтрах. Таким образом, в комнату попадает только воздух, отвечающий нормативам ГОСТа, а значит избавленный от пыли и микроорганизмов на 99,9%.

Каков механизм вентиляции и воздухообмена?

В любой комнате рано или поздно скапливаются посторонние примеси в виде аэрозольных частиц. Свежая порция очищенного воздуха поступает в помещение таким образом, что поток свежего воздуха вытесняет примеси. Это называется ламинарным потоком, так как он направлен в одну сторону. Несколько таких потоков создают воздухообмен в комнате. Они направлены либо параллельно друг другу, либо, как это часто бывает в больших помещениях, в разные стороны, чтобы потоки не пересекались. В больших комнатах потоки регулируют так, чтобы воздух поступал непосредственно в рабочую зону. Воздухозаборники находятся ниже, «грязный» воздух благодаря созданной вентиляции движется к ним.

Приточно-вытяжная вентиляционная система чистых помещений включает в себя также теплообменные установки и увлажнитель воздуха. Они создают такой микроклимат, который является комфортным для человека и поддерживает оптимальную рабочую среду.

Вентиляция позволяет сохранять постоянные значения температуры, влажности, избавляет от пыли и от большинства микроорганизмов.

ГОСТ Р 56190-2014

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Чистые помещения

Методы энергосбережения

Cleanrooms. Energy efficiency

ОКС 13.040.01;
19.020
ОКП 63 1000
94 1000

Дата введения 2015-12-01

Предисловие

1 РАЗРАБОТАН Общероссийской общественной организацией "Ассоциация инженеров по контролю микрозагрязнений" (АСИНКОМ) при участии Открытого акционерного общества "Научно-исследовательский центр контроля и диагностики технических систем" (АО "НИЦ КД")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 184 "Обеспечение промышленной чистоты"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 24 октября 2014 г. N 1427-ст

4 ВВЕДЕН ВПЕРВЫЕ


Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

Введение

Введение

Чистые помещения широко применяются в электронной, приборостроительной, фармацевтической, пищевой и других отраслях промышленности, в производстве медицинских изделий, в больницах и т.д. Они стали неотъемлемой частью многих современных процессов и средством защиты человека, материалов и продукции от загрязнений.

В то же время чистые помещения требуют значительных энергозатрат, в основном, на вентиляцию и кондиционирование воздуха, которые могут превышать расход энергии в обычных помещениях в десятки раз. Это вызвано высокими кратностями воздухообмена и, как следствие, значительными потребностями в нагреве, охлаждении, увлажнении и осушении воздуха.

Сложившаяся практика создания чистых помещений ориентирована на обеспечение заданных классов чистоты без должного внимания к задачам экономии энергоресурсов.

Поддержание заданной чистоты в помещении является непростой и комплексной задачей. Необходимо точное знание характеристик выделения частиц и на их основе выполнение расчетов расхода воздуха и кратности воздухообмена, что не всегда возможно. Концентрация частиц в воздухе носит вероятностный характер и зависит от многих факторов: влияния человека, процесса, оборудования, материалов и продукции, которые трудно оценить точно, особенно на стадии проектирования. В силу этого проектные решения принимаются с большим запасом, чтобы при аттестации и эксплуатации гарантированно получить заданный класс чистоты.

Хорошо продуманное и построенное чистое помещение имеет запас по чистоте. Существующая практика аттестации и эксплуатации чистых помещений этот запас не учитывает, что приводит к излишнему расходу энергии.

Еще одна причина излишне высоких кратностей воздухообмена, закладываемых в проекты, состоит в применении нормативных требований, которые не распространяются на данный объект. Например, приложение 1 к ГОСТ Р 52249-2009 "Правила производства и контроля качества лекарственных средств" (GMP) устанавливает, что время восстановления чистого помещения при производстве стерильных лекарственных средств не должно превышать 15-20 мин. Для выполнения этого требования кратность воздухообмена может существенно превышать значения, необходимые для обеспечения класса чистоты в установившемся режиме.

Распространение требований к производству стерильных лекарственных средств на нестерильные препараты и другую продукцию, в том числе немедицинского назначения, приводит к существенному перерасходу энергии.

Рекомендации по экономии энергии в чистых помещениях приведены в стандартах Великобритании BS 8568:2013* и Общества немецких инженеров VDI 2083 Часть 4.2 .
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru . - Примечание изготовителя базы данных.


В настоящем стандарте приведены требования к определению реального резерва мощности на этапах аттестации и эксплуатации исходя из фактического расхода энергоресурсов при гарантии соответствия заданному классу чистоты. Экономия энергии должна предусматриваться не только на этапе проектирования чистых помещений, но и обеспечиваться при аттестации и эксплуатации.
________________

A.Fedotov. - "Saving energy in cleanrooms". Cleanroom Technology. London, August, 2014, pp.14-17 Федотов A.E. "Экономия энергии в чистых помещениях" - "Технология чистоты" N 2/2014, стр. 5-12 Чистые помещения. Под ред. А.Е.Федотова. М., АСИНКОМ, 2003 г., 576 с.


При аттестации и эксплуатации чистых помещений следует оценивать реальное выделение частиц и на основе этого определять необходимый расход воздуха и кратность воздухообмена, которые могут быть существенно ниже проектных значений.

В настоящем стандарте приведен гибкий подход к определению кратности воздухообмена с учетом реального выделения частиц и технологического процесса.

1 Область применения

Настоящий стандарт устанавливает методы энергосбережения в чистых помещениях.

Стандарт предназначен для применения при проектировании, аттестации и эксплуатации чистых помещений с целью экономии энергоресурсов. Стандарт учитывает специфику чистых помещений и может использоваться в различных отраслях (радиоэлектронной, приборостроительной, фармацевтической, медицинской, пищевой и др.).

Стандарт не затрагивает требования к вентиляции и кондиционированию, установленные нормативными и нормативно-правовыми документами по безопасности работы с патогенными микроорганизмами, токсичными, радиоактивными и другими опасными веществами.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р ЕН 13779-2007 Вентиляция в нежилых зданиях. Технические требования к системам вентиляции и кондиционирования

ГОСТ Р ИСО 14644-3-2007 Чистые помещения и связанные с ними контролируемые среды. Часть 3. Методы испытаний

ГОСТ Р ИСО 14644-4-2002 Чистые помещения и связанные с ними контролируемые среды. Часть 4. Проектирование, строительство и ввод в эксплуатацию

ГОСТ Р ИСО 14644-5-2005 Чистые помещения и связанные с ними контролируемые среды. Часть 5. Эксплуатация

ГОСТ Р 52249-2009 Правила производства и контроля качества лекарственных средств

ГОСТ Р 52539-2006 Чистота воздуха в лечебных учреждениях. Общие требования

ГОСТ ИСО 14644-1-2002 Чистые помещения и связанные с ними контролируемые среды. Часть 1. Классификация чистоты воздуха

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте использованы термины и определения по ГОСТ ИСО 14644-1 , а также следующие термины с соответствующими определениями:

3.1 время восстановления: Время снижения концентрации частиц в помещении в 100 раз по сравнению с начальной, достаточно большой концентрацией частиц.

Примечание - Методика определения времени восстановления приведена в ГОСТ Р ИСО 14644-3 (пункт В.12.3).

3.2 кратность воздухообмена N : Отношение расхода воздуха L (м/ч) к объему помещения V (м), N=L/V , ч.

3.5 расход воздуха L : Количество воздуха, подаваемого в помещение в час, м/ч.

эффективность вентиляции : Эффективность вентиляции характеризует связь между концентрацией загрязнений в приточном воздухе, вытяжном воздухе и в зоне дыхания (внутри эксплуатируемой зоны).Эффективность вентиляции вычисляется по формуле

где c - концентрация загрязнений в вытяжном воздухе;

c - концентрация загрязнений внутри помещения (в зоне дыхания в пределах эксплуатируемой зоны);

c - концентрация загрязнений в приточном воздухе.

Эффективность вентиляции зависит от распределения воздуха, а также от вида и места нахождения источников загрязнения воздуха. Она может быть разной для различных видов загрязнений. Если происходит полное удаление загрязнений, то эффективность вентиляции равна единице. Более подробно понятие "эффективность вентиляции" рассмотрено в CR 1752.

Примечание - Для обозначения данного понятия также широко используется термин "эффективность удаления загрязнений".


[ГОСТ Р ЕН 13779-2007 , статья 3.4]

4 Принципы экономии энергии в чистых помещениях

4.1 Меры по энергосбережению

Меры по энергосбережению могут быть общими для любых зданий, производств и систем вентиляции и кондиционирования или специальными для чистых помещений.

4.2 Общие меры

К общим мерам относятся:

- минимизация поступления и потерь тепла, утепление зданий;

- рекуперация тепла;

- рециркуляция воздуха с доведением доли наружного воздуха до минимума, где это не запрещено обязательными нормами;

- размещение энергоемких производств в климатических зонах, не требующих чрезмерно высоких затрат на обогрев и увлажнение воздуха зимой, охлаждение и осушение летом;

- использование высокоэффективных вентиляторов, кондиционеров и чиллеров;

- исключение неоправданно жестких диапазонов изменения температуры и влажности;

- поддержание влажности воздуха в зимний период на минимальном уровне;

- удаление избытков теплоты от оборудования преимущественно встроенными в оборудование локальными системами, а не средствами вентиляции и кондиционирования воздуха и т.д.

- использование средств защиты рабочих мест и вытяжных шкафов, не требующих удаления больших объемов воздуха при работе с вредными веществами (например, закрытое оборудование, системы с ограниченным доступом, изоляторы);

- использование оборудования с резервом мощности (например, кондиционеры, фильтры и др.), имея в виду, что оборудование с большей номинальной мощностью потребляет меньше энергии для выполнения данной задачи;

Примечание - При одинаковом расходе воздуха у вентилятора (кондиционера) с большей номинальной мощностью расход энергии будет меньше.


- другие меры согласно 4.4.2.

4.3 Специальные меры

Эти меры учитывают особенности чистых помещений и включают в себя:

- сокращение до разумного минимума площадей чистых помещений и других помещений с кондиционированием воздуха;

- исключение задания необоснованно высоких классов чистоты;

- обоснование кратностей воздухообмена, избегая чрезмерно высоких значений, в том числе из-за неоправданно жестких требований к времени восстановления;

- использование HEPA и ULPA фильтров с пониженным перепадом давления, например мембранных тефлоновых фильтров;

- герметизацию неплотностей в стыках ограждающих конструкций;

- применение местной защиты при задании высокого класса в ограниченной зоне исходя из требований процесса;

- сокращение численности персонала или использование безлюдных технологий (например, использование закрытого оборудования, изоляторов);

- снижение расхода воздуха в нерабочее время;

- определение на этапах аттестации и эксплуатации реальной величины резерва мощности, заложенной проектом;

- строгое соблюдение требований эксплуатации, в том числе к одежде, гигиене персонала, обучению и пр.;

- определение действительно необходимых расходов воздуха при испытаниях и во время эксплуатации и регулирование расходов воздуха до минимальных значений, основываясь на этих данных;

- эксплуатация чистого помещения при сниженных расходах энергии при условии соблюдения требований к классу чистоты;

- подтверждение возможности работы при сниженных расходах энергии путем текущего контроля чистоты (мониторинга) и повторных аттестаций;

- другие меры согласно 4.4.2.

4.4 Этапы экономии энергии

4.4.1 Общие положения

Оценка потребности в энергоресурсах выполняется на этапах проектирования, аттестации и эксплуатации.

Основным фактором, определяющим потребность в энергоресурсах, является расход воздуха (кратность воздухообмена).

Расход воздуха должен быть определен на этапе проектирования. При этом предусматривается некоторый резерв с учетом неопределенности из-за отсутствия точных данных о выделении частиц оборудованием, процессом и по другим причинам.

На этапе аттестации проверяется правильность проектных решений и определяется реальный резерв систем вентиляции и кондиционирования по расходу воздуха.

При эксплуатации контролируют соответствие чистого помещения заданному классу чистоты.

Примечание - Данный подход отличается от существующей практики. Традиционно расход воздуха определяется на этапе проектирования (в проекте), в построенном помещении при аттестации проверяют соответствие расхода воздуха заданному в проекте и этот расход воздуха поддерживается при эксплуатации. При этом проектом закладывается избыточность расхода воздуха ввиду наличия некоторой неопределенности, но эта избыточность не выявляется при испытаниях. Далее помещение эксплуатируется при излишне высоких кратностях воздухообмена, что приводит к перерасходу энергии.


Настоящий стандарт предусматривает определение реального резерва в проектных решениях и эксплуатацию чистого помещениях при реально необходимых расходах воздуха, которые оказываются менее проектных значений на величину установленного при испытаниях резерва.

В стандарте приведен гибкий порядок определения кратностей воздухообмена.

4.4.2 Проектирование

Следует принимать общие и специальные меры экономии энергии (см. 4.2-4.3) с учетом реальных возможностей.

Наряду с этим следует предусмотреть:

- регулирование расходов воздуха средствами автоматизации, включая задание режимов для рабочего и нерабочего времени и обеспечение параметров микроклимата в зависимости от конкретных условий;

- переход от обеспечения класса чистоты во всем помещении к местной защите, при которой задается и контролируется класс чистоты только в рабочей зоне, либо в рабочей зоне предусматривается более высокий класс чистоты, чем в остальной части помещения;

- учет работы ламинарных шкафов и ламинарных зон. В этом случае к расходу воздуха на обеспечение чистоты от кондиционера добавляется расход воздуха от ламинарного шкафа (зоны);

- для помещений, где требуется только местная защита, следует рассмотреть целесообразность применения горизонтального потока воздуха вместо вертикального. В отдельных случаях возможно создание потока воздуха под углом, например под углом 45° по отношению к потолку;

- снижение сопротивления потоку воздуха на всех элементах тракта движения воздуха, в том числе за счет низкой скорости воздуха в воздуховоде.

Методы экономии энергии различаются для помещений (зон) с однонаправленным и неоднонаправленным потоком.

4.4.2.1 Однонаправленный поток воздуха

Для зон с однонаправленным потоком ключевым фактором является скорость потока воздуха. Рекомендуется поддерживать скорость однонаправленного потока примерно 0,3 м/с, если нормативными документами не предусмотрено иное. В случае противоречия предусматривается значение скорости, установленное нормативными документами. Например, ГОСТ Р 52249 (приложение 1) предусматривает скорость однонаправленного потока воздуха в пределах 0,36-0,54 м/с; ГОСТ Р 52539 - 0,24-0,3 м/с (в операционных и палатах интенсивной терапии).

4.4.2.2 Неоднонаправленный поток воздуха

Для чистых помещений с неоднонаправленным (турбулентным) потоком решающим фактором является кратность воздухообмена (см. раздел 5).

4.4.3 Аттестация

Аттестация (испытания) чистых помещений проводится по ГОСТ Р ИСО 14644-3 и ГОСТ Р ИСО 14644-4 .

В дополнение к этому следует проверить возможность поддержания класса чистоты с запасом при сниженных кратностях и реальных значениях выделения частиц, т.е. определить резерв систем вентиляции и кондиционирования. Это выполняют для оснащенного и эксплуатируемого состояний чистого помещения.

4.4.4 Эксплуатация

Следует подтвердить возможность работы со сниженными кратностями воздухообмена в реальном режиме при выполнении технологического процесса с установленной численностью персонала, использовании данной одежды и пр.

С этой целью предусматривается периодический и/или непрерывный контроль концентрации частиц.

Следует принять меры по снижению выделения частиц всеми возможными источниками, поступлению частиц в помещение и эффективному удалению частиц из помещения, в том числе от персонала, процессов и оборудования, конструкций чистого помещения (удобство и эффективность очистки).

Основными мерами снижения выделения частиц являются:

1) персонал:

- использование соответствующей технологической одежды;

- соблюдение требований гигиены;

- правильное поведение исходя из требований технологии чистоты;

- обучение;

- применение липких ковриков при входе в чистые помещения;

2) процессы и оборудование:

- очистка (мойка, уборка);

- использование местных отсосов (удаление загрязнений с места их выделения);

- применение материалов и конструкций, не адсорбирующих загрязнения и обеспечивающих эффективность и удобство проведения уборки;

3) уборка:

- правильная технология и необходимая периодичность уборки;

- применение инвентаря и материалов, не выделяющих частиц;

- контроль за проведением уборки.

5 Кратность воздухообмена

5.1 Задание кратности воздухообмена

Принимая во внимание ключевую роль расхода воздуха в потреблении энергии, следует выполнять оценку кратностей воздухообмена по всем влияющим на них факторам:

a) потребности в наружном воздухе по санитарным нормам;

b) компенсации местных вытяжек (отсосов);

c) поддержания перепада давления;

d) удаления избытков теплоты;

e) обеспечения заданного класса чистоты.

Следует принять меры по снижению расходов воздуха, не связанных с обеспечением чистоты (перечисления a-d) до значений, меньших, чем необходимо для обеспечения чистоты (e).

Для расчета системы вентиляции и кондиционирования принимается кратность по наихудшему (наибольшему) значению.

Необходимая кратность воздухообмена (расход воздуха) зависит от требований к классу чистоты (предельно допустимой концентрацией частиц в воздухе) и времени восстановления.

Методика расчета кратности воздухообмена для обеспечения чистоты приведена в приложении A.

5.2 Обеспечение класса чистоты

Классификация чистых помещений приведена в ГОСТ ИСО 14644-1 .

Требования к классам чистоты задаются в соответствии нормативными документами (для производства лекарственных средств - по ГОСТ Р 52249 , лечебных учреждений - по ГОСТ Р 52539) либо заданием на проектирование (техническим заданием на разработку) чистого помещения исходя из специфики технологического процесса и по соглашению между заказчиком и исполнителем.

На этапе проектирования интенсивность выделения частиц может быть оценена лишь приближенно, в связи с этим следует предусматривать запас кратности воздухообмена.

5.3 Время восстановления

Время восстановления принимается в соответствии с нормативными требованиями для предусмотренных в них случаев. Например, ГОСТ Р 52249 устанавливает время восстановления 15-20 мин для производств стерильных лекарственных средств. В остальных случаях заказчик и исполнитель могут задавать иные значения времени восстановления (30, 40, 60 мин и др.) исходя из конкретных условий.

Методика расчета снижения концентрации частиц и времени восстановления приведена в приложении A.

На концентрацию частиц в воздухе и время восстановления сильное влияние оказывают одежда персонала и другие условия эксплуатации (см. пример в приложении B).

При наличии в помещении зоны с однонаправленным потоком воздуха следует учитывать ее влияние на чистоту воздуха (см. приложение A).

Приложение A (справочное). Зависимость концентрации частиц и времени восстановления от кратности воздухообмена

Приложение A
(справочное)

Основным источником загрязнений в чистом помещении является человек. Во многих случаях эмиссия загрязнений от оборудования и конструкций мала по сравнению с выделениями от человека и ею можно пренебречь.

Концентрация частиц C в воздухе помещений с приточной вентиляцией в момент времени t рассчитывается (в общем случае) по формуле

где C - концентрация частиц в начальный момент (при включении системы вентиляции или после внесения загрязнений в воздух) t =0, частиц/м;

n - интенсивность выделения частиц внутри помещения, частиц/с;

V - объем помещения, м;

k - коэффициент, рассчитываемый по формуле (A.2);

k - коэффициент, рассчитываемый по формуле (A.3).

где - коэффициент эффективности системы вентиляции, для чистых помещений с неоднонаправленным (турбулентным) потоком принимается =0,7;

Q - расход приточного воздуха, м/с;

q - объем воздуха, проникающего внутрь помещения из-за негерметичности (инфильтрация воздуха), м/с;

- доля рециркуляционного воздуха;

- эффективность фильтрации рециркуляционного воздуха.

где - эФФективность фильтрации наружного воздуха;

C - концентрация частиц в наружном воздухе, частиц/м;

C - концентрация частиц в воздухе, поступающем за счет инфильтрации, частиц/м.

Формула (A.1) включает в себя два слагаемых: переменное C и постоянное C .

C=C +C , (A.4)

где ,
.

Переменная часть характеризует переходный процесс, когда концентрация частиц в воздухе помещения снижается после включения вентиляции или внесения загрязнений в помещение.

Постоянная часть характеризует установившийся процесс, при котором система вентиляции удаляет частицы, генерируемые в помещении (персоналом, оборудованием и пр.) и поступающие в помещение извне (с приточным воздухом, за счет инфильтрации).

В практических расчетах принимают:

- инфильтрацию воздуха равной нулю, q =0;

- эффективность фильтрации равной 100%, т.е. =0 и =0.

Тогда коэффициенты равны

k = · Q=0,7·Q ,

k =0

Формула (A.1) упрощается

где N - кратность воздухообмена, ч;

Q = N·V. (А.6)

Пример A.1 Чистое помещение в оснащенном состоянии (без персонала, процесс не ведется)

Рассмотрим чистое помещение со следующими параметрами:

- объем V =100 м ;

- класс чистоты 7 ИСО; оснащенное состояние; заданный размер частиц 0,5 мкм (352000 частиц/м );

0,5 мкм внутри помещения =10 частиц/с;

- С =10 частиц/м , частицы с размерами 0,5 мкм;

- кратность воздухообмена N, соответствует ряду 15*, 10, 15, 20, 30;
___________________


- расход воздуха Q, м /с, рассчитываемый по формуле (A.6)

где 3600 - число секунд в 1 часе;

- коэффициент эффективности системы вентиляции для чистых помещений с неоднонаправленным (турбулентным) потоком принимается =0,7.

Расчет снижения концентрации частиц по истечению времени t выполняем по формуле (A.5):

где .

Примечание - При расчетах следует выражать время в секундах.

Данные расчета приведены в таблице A.1.

Таблица A.1 - Изменение концентрации частиц с размерами 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением времени в оснащенном состоянии

Данные таблицы A.1 в графическом даны на рисунке A.1.*
___________________
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.


Из таблицы А.1 и рисунка А.1 видно, что условие времени восстановления менее 15-20 мин (снижения концентрации частиц в воздухе в 100 раз) выполняется для кратностей воздухообмена 15, 20 и 30 ч . Если допустить время восстановления равным 40 мин, то кратность воздухообмена можно снизить до 10 ч . В эксплуатации это означает переключение систем вентиляции на рабочий режим за 40 мин до начала работы.

Рисунок А.1 - Изменение концентрации частиц с размерами не менее 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением временив оснащенном состоянии

Рисунок А.1 - Изменение концентрации частиц с размерами 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением временив оснащенном состоянии

Пример А.2. Чистое помещение в эксплуатации

Чистое помещение то же, что в примере A.1.

Условия:

- эксплуатируемое состояние;

- численность персонала 4 человека;

- интенсивность выделения частиц с размерами 0,5 мкм одним человеком равна 10 частиц/с (используется одежда для чистых помещений);

- выделение частиц оборудованием практически отсутствует, т.е. учитывается только выделение частиц персоналом;

- n =4·10 частиц/с;

- С =10 частиц/м .

Рассчитаем снижение концентрации частиц с течением времени по формулам

,

Результаты расчета указаны в таблице A.2.

Таблица A.2 - Изменение концентрации частиц с размерами

Данные таблицы A.2 показаны в графическом виде на рисунке A.2.

Рисунок А.2 - Изменение концентрации частиц с размерами не менее 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением времени (используется одежда для чистых помещений)

Рисунок А.2 - Изменение концентрации частиц с размерами 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением времени (используется одежда для чистых помещений)

Как видно из примера A.2, при кратности воздухообмена 10 ч класс 7 ИСО достигается через 35 мин после начала работы системы вентиляции (если нет других источников загрязнения). Надежное поддержание класса чистоты 7 ИСО обеспечивается с запасом при кратности воздухообмена 15-20 ч .

Приложение B (справочное). Оценка влияния одежды на уровень загрязнений

Приложение B
(справочное)

Рассмотрим влияние одежды на концентрацию частиц в воздухе для случаев:

- обычная одежда для чистых помещений - куртка/брюки, интенсивность выделения частиц 10 частиц/с;

- высокоэффективная одежда - комбинезон для чистых помещений, интенсивность выделения частиц 10 частиц/с.

Данные в таблице B.1 получены по методике, приведенной в приложении А.

Таблица B.1 - Концентрации частиц с размерами 0,5 мкм в воздухе для различных видов одежды для чистых помещений при кратности воздухообмена 10 ч

Примечание - Предполагается, что персонал соблюдает требования гигиены, поведения, переодевания и другие условия эксплуатации чистых помещений по ГОСТ Р ИСО 14644-5 .

Данные таблицы B.1 показаны в графическом виде на рисунке B.1.

Рисунок В.1 - Концентрации частиц с размерами не менее 0,5 мкм в воздухе для различных видов одежды при кратности воздухообмена 10 ч_(-1)

Рисунок В.1 - Концентрации частиц с размерами 0,5 мкм в воздухе для различных видов одежды при кратности воздухообмена 10 ч

Из таблицы B.1 и рисунка B.1 видно, что применение высокоэффективной одежды позволяет достигать уровня чистоты класса 7 ИСО при кратности воздухообмена 10 чи времени восстановления 40 мин (если нет других источников загрязнений).

Библиография

Cleanroom energy - Code of practice for improving energy in cleanrooms and clean air devices

VDI 2083 Part 4.2

Cleanroom technology - Energy efficiency, Beuth Verlag, Berlin (April 2011)

УДК 543.275.083:628.511:006. 354

ОКС 13.040.01;

Ключевые слова: чистые помещения, энергосбережение, вентиляция, кондиционирование воздуха, расход воздуха, кратность воздухообмена

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2015

С увеличением объемов строительства в нашей стране объектов здравоохранения, лабораторий, предприятий, по производству микроэлектроники, лекарственных препаратов и пр., резко возрос спрос на системы вентиляции для «чистых помещений», о которых и пойдет речь в этой публикации.

Концепция «чистой комнаты»

Чистым помещением (ЧП) принято называть комнату или группу помещений со всеми относящимися к ним структурами, в которых счетная концентрация взвешенных частиц и микроорганизмов в воздушной смеси поддерживается на строго определенном уровне, определяемом ГОСТ ИСО 14644-1-2002; СНиП 41-01-2003(8); санитарными нормами и требуемым классом чистоты. Свои стандарты чистоты воздушной смеси есть в США, Германии, Франции, Великобритании и Евросоюзе.

В зависимости от счетного количества взвешенных частиц, размером от 0,1 до 5,0 мкм на 1 м 3 в ЧП, и концентрации в нем микроорганизмов, определено 9 классов стерильности.

Исходя из ПДК микроорганизмов, класс 5 iso делится на два подвида:

  • «А» — ПДК микроорганизмов не более 1/м 3 ;
  • «В» — ПДК микроорганизмов не более 5/м 3 .

Для ЧП используется его класс iso и состояние: «эксплуатируемое»; «построенное» и «оснащенное».

Оборудование для создания «чистого воздухообмена»

Создание грамотных систем вентиляции и кондиционирования чистых помещений – это сложный процесс, требующий знаний особенностей воздухообмена, специального оборудования и специфических технических решений.

Воздух в такое помещение должен подаваться уже очищенным от загрязнений, бактерий и микроорганизмов, поэтому особую роль в создании стерильного микроклимата в «чистых комнатах» играет система фильтрации приточной воздушной смеси. Востребованной системой очистки является установка после нагнетающего вентилятора трех групп фильтрующих элементов:

  1. Первая группа состоит из фильтра грубой очистки от механических загрязнений.
  2. Вторая группа фильтров состоит из набора фильтрующих элементов тонкой очистки и антибактериального фильтра.
  3. Третья группа состоит из микрофильтров НЕРА с абсолютной очисткой приточного воздуха.

Кроме фильтрующих элементов, в проветривании чистых комнат участвуют: вентиляторы, воздухозаборное и воздухораспределительное оборудование, устройства автоматического поддержания необходимой влажности и температуры, запорная и регулирующая аппаратура, шлюзы и пр. Выбор того или иного комплекта оборудования зависит от назначения ЧП, и требуемой для функционирования этого объекта класса чистоты воздуха.

При проектировании систем проветривания ЧП большое внимание уделяется конструкции и покрытию воздуховодов и фильтровальных камер, которые должны проходить периодическую антимикробную обработку.

Особенности воздухообмена

Для поддержания чистоты воздуха, в технологически чистых помещениях должна применяться вентиляция с избыточным объемом притока, по сравнению с вытяжкой в прилегающих к ней комнатах.

  • Если помещение без окон, то приток должен преобладать над вытяжкой на 20%.
  • Если в ЧП есть окна, допускающие инфильтрацию, то производительность воздухоснабжения должна быть выше вытяжки на 30%.

Именно такая система воздухообмена препятствует проникновению загрязнений, и обеспечивает движение воздуха из чистой комнаты в смежные с ней помещения. Большое внимание проектировщиков уделяется способам подачи воздушной смеси на такие объекты и зависит от их назначения.

Приток в ЧП с классом чистоты от 1 до 6, должен подаваться воздухораспределительным устройством сверху вниз, создавая равномерные однонаправленные воздушные потоки небольшой скорости, от 0,2 до 0,45 м/с. В комнатах с более низким классом чистоты, допускается создание не однонаправленного потока, посредством нескольких потолочных диффузоров. Кратность воздухообмена для ЧП устанавливается в зависимости от их назначения, от 25 до 60 раз в час.

Наиболее распространенные схемы

При проектировании вентиляции чистых помещений одной из главнейших проблем является правильная организация потоков воздушной смеси. На сегодняшний день проектировщиками применяются несколько решений расположения воздухораспределительных устройств, выбор которых зависит от назначения ЧП. Рассмотрим наиболее распространенные схемы организации вентиляции операционной.

  • А) приток воздуха однонаправленный, через наклонную вентиляционную решетку;
  • Б) не однонаправленный приток воздушной смеси производится посредством использования потолочных диффузоров;
  • В) приточный воздух в операционную подается через перфорированную потолочную панель с созданием вертикального однонаправленного воздушного потока;
  • Г) приточная воздушная смесь подается через потолочный воздухораспределитель, который создает однонаправленный воздушный поток в рабочую зону;
  • Д) воздух не однонаправленный через кольцевой воздушный шланг.

Вытяжная вентиляция чистых помещений операционных производится посредством вытяжных вентиляторов и переточных стеновых решеток с обратными клапанами.

Как показала практика, лучшим устройством для создания однонаправленного ламинарного воздушного потока в операционной являются сетчатые воздухораспределители потолочного типа. Например, ламинарный потолок с размерами 1,8 на 2,4 м. в операционной, площадью 40 м 2 , позволит создать 25 кратный воздухообмен при скорости выхода воздуха из устройства 0,2 м/с. Этих показателей достаточно для ассимиляции теплоизбытков от работы оборудования и количества персонала в операционной.

Проектирование систем вентиляции и кондиционирования в ЧП – это сложный процесс, требующий знаний процессов воздухообмена и тонкостей использования воздухораспределительного оборудования. Именно поэтому для создания вентиляции на таких объектах следует обращаться исключительно к профессионалам.