Защита от тока утечки. Схема, описание. Заметки для мастера - защита домашнего электрооборудования Защита от утечки электрического тока

Подавляющее большинство бытовых электроприборов не имеют защитного заземления. Международный стандарт требует установки дополнительной клеммы заземления в сетевых вилках и розетках, но даже их наличие не обеспечивает безопасность при пользовании электроприбором.

Использования в качестве заземляющей линии нулевой провод категорически запрещено, так как обрыв линии может привести к появлению на нулевом проводе сетевого напряжения.
Предохранители электросети и автоматические защитные устройства могут и не сработать при небольшом токе утечки, но достаточном для поражения человека: к примеру автоматы в электрощитах срабатывают от тока выше пяти ампер, а поражающий ток для человека составляет одну десятую ампера.

В бытовых розетках нет разграничения между фазой и нулём.
Эксплуатация бытовых электроприборов без заземления во влажных и токопроводящих помещениях категорически запрещено, ввиду возможного поражения электротоком.
Повреждения изоляции подводящей электропроводки или внутренние замыкания электросети на корпус прибора грозит замыканием линии и её возгоранием.
Избежать электротравм поможет автоматическое устройство, которое отключит неисправный электроприбор раньше чем сработает защита сети, как только на корпусе появится напряжение утечки.

Блок схема устройства защиты от тока утечки состоит:
1. Транзисторный триггер
2. Тиристорное релейное устройство
3. Трансформаторы тока утечки
4. Выпрямитель питания устройства
5. Светодиодная сигнализация сети и включения
6. Стабилизатор питающего напряжения

Защитное устройство электрически не связано с нагрузкой и выполнено как переходник.
Работа устройства основана на контроле тока в цепях питания нагрузки.

Напряжение на обмотках трансформатора Т1,Т2, созданное протекающим током нагрузки электроприбора, алгебраически суммируется и при одинаковых уровнях равно нулю. Превышение тока в одной из цепей (утечка) питания нагрузки создаёт разность магнитных полей и напряжение разности токов поступает на триггер электронного устройства.

Конденсатор С2 на входе выпрямительного моста VD1 устраняет возможные срабатывания схемы устройства от помех сети питания нагрузки.
Выпрямленное напряжение с моста VD1 через подстроечный резистор R1 поступает на базу транзистора VT1 транзисторного триггера.
Усиленное транзистором VT1 напряжение рассогласования в триггерном режиме переключит транзистор VT1 в открытое состояние, а транзистор VT2 в закрытое состояние.
Резистор R3 позволяет установить чувствительность триггера на транзисторах VT1,VT2 в зависимости от их характеристик усиления.
Тиристор VS1 откроется и включит реле К1, которое контактами К1.1 разомкнёт цепь питания нагрузки.

Используя режим работы тиристора в цепях постоянного тока, блокировку после подачи напряжения управления - оставляет нагрузку в отключенном состоянии. После выявления пробоя или утечки на корпус электроприбора, устройство включают повторно.

Стабилизированная схема питания устройства защиты от тока утечки состоит из силового трансформатора Т3, с вторичным напряжением 12 Вольт 0,1Ампер, выпрямительного моста VD3,сглаживающего конденсатора С3,С6 и аналогового стабилизатора на микросхеме DA1.
Индикация включения устройства выполнена на светодиоде красного свечения HL1.

Регулировку схемы устройства заключается в установке чувствительности транзисторного триггера.
При отключенном от схемы трансформаторов Т1,Т2 установить резистор R3 в положение предопределяющее включение реле К1,то есть чтобы оно сработало и вернуть движок резистора в режим отключения триггера.
Эпюры режима переключений можно отследить по включению светодиода HL2, свечение его указывает на включенное состояние нагрузки, потухание - что нагрузка отключена (аварийное состояние).

Концы обмоток трансформаторов Т1,Т2 соединить последовательно так, чтобы при подключении нагрузки (временно в виде настольной лампы) переменное напряжении на конденсаторе С2 было равно нулю. Создав искусственную утечку, подав переменное напряжение величиной 1-5 вольт через ограничивающий резистор 100 Ом, от любого сетевого трансформатора с напряжением 5-12 вольт проследить отключение нагрузки. Трансформаторы Т1,Т2 при этом отключать не следует.

Наименование

Замена

Примечание

Стабилизатор

Транзистор

Транзистор

Тиристор

Резистор подстр.

Диод. мост

Резисторы

Трансформатор

РЭС 47,РЭС59

Трансформаторы тока Т1,Т2 представляю собой ферритовые кольца 2000НМ- диаметр 18 мм, с намотанными обмотками 96 витков ПЭЛ -2 диаметром 0,1 мм, токовые провода питания электроприбора пропущены через внутреннее отверстие ферритового кольца.

Для защиты потребителей мощностью более 200 ватт нагрузку электроприбора следует подключить через пускатель нулевой или первой величины, катушку пускателя запитать от сети через нормально - замкнутые контакты реле К1(1-2).

Монтажная схема устройства защиты от тока утечки собирается в пластмассовую коробку БП-1 с розеткой для подключения нагрузки электроприбора, светодиоды выносятся на внешнюю панель корпуса, трансформаторы тока Т1,Т2 закреплены навесом.

Сигнализатор отключения с резервным питанием

Схема сигнализатора отключения электроэнергии, рис.1, не только издает звуковой сигнал при отключении энергии, но и посредством электромагнитного реле может включить источник резервного питания. В этой схеме сигнализатора применен тот же генератор прерывистого сигнала, но плюс к нему, схема дополнена электромагнитным реле, которое одним из контактов подключено между диодами VD1 и VD2.

Рис.1

Сигнализатор отключения электроэнергии

При наличии напряжения в электросети контакты этого реле притянуты. При пропадании тока, конденсатор С6 резко разряжается, в результате чего напряжение на реле падаете оно размыкает контакты. Наличие в схеме диода VD2 предотвращает быстрый разряд конденсаторов С1 и С2 сквозь обмотку реле.

Схемы автоматической защиты трехфазного двигателя при пропадании фазы

Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако они либо сложны, либо недостаточно чувствительны, рис.2

Рис.2

Защитные устройства можно условно разделить на релейные и диоднотранзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.
В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключастся к трехфазной сети.
При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В к С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Защита от тока

Бытовые электрические приборы - стиральные машины, электромясорубки, электрокамины, - как правило, работают от сети переменного тока напряжением 220 В. В случае пробоя изоляции на металлическом корпусе такой установки может оказаться опасное для жизни человека напряжение. Для защиты от поражения электрическим током бытовые приборы следует заземлять, особенно если они используются в помещениях с повышенной опасностью.

Повышенную опасность представляют ванные комнаты во время стирки белья в стиральной машине. Причем возможность поражения электрическим током значительно возрастает, если пол в помещении токопроводящий, влажность воздуха превышает 75%.

У большинства установленных в квартирах розеток третий, заземляющий провод, как правило, отсутствует. Поэтому там где его нет, в качестве защитной меры от возможного поражения током в случае его утечки или пробоя изоляции на корпус рекомендуется устанавливать автоматические отключающие устройства рис.3.


Рис.3

Потребитель электрической энергии, содержащий обмотку L 1, включают в сеть с помощью двухполюсного неполярного разъема (обычных вилки и розетки). От выпрямителя, собранного по мостовой схеме на диодах VD 1- VD 4, питается реле К1, имеющее две размыкающие контактные пары К1.1 и К1.2. Последовательно с общей обмоткой реле включен тиристор VS 1. Его управляющий электрод соединен через резистор R 2 с коллектором транзистора VT 1. Эмиттер транзистора подключен к положительному полюсу выпрямителя, а база через высокоомный резистор R 1 соединена с металлическим корпусом электроприбора.

Работает устройство следующим образом. Когда исправный электроприбор включен в сеть, обмотка реле не получает питание, поскольку тиристор закрыт. Через размыкающие контакты К1.1 и К1.2 ток проходит по обмотке потребителя L 1. В случае пробоя изоляции ток протекает от фазного или «нулевого» провода через один из диодов выпрямителя, переход «эмиттер - база» транзистора, резистор R 1, металлический корпус электроприбора, а затем через место пробоя изоляции и часть обмотки L 1 поступает на провод с напряжением противоположной полярности. В результате транзистор открывается, и в его коллекторной цепи начинает протекать ток. Через резистор R 2 он поступает на управляющий электрод тиристора и далее на «минус» выпрямителя. Срабатывает реле и размыкает свои контактные пары, отключая электроприбор от сети. При этом через переход «эмиттер - база» VT 1 ток не проходит, и транзистор закрывается. Однако тиристор продолжает оставаться открытым, поскольку обмотка реле играет роль сглаживающего фильтра, и через VS 1 протекает постоянный ток, величина которого достаточна для удержания тиристора в открытом состоянии. Поэтому после срабатывания автомата реле остается задействованным до тех пор, пока электроприбор не будет отключен от сети.

Защитное устройство отключает электроустановку при пробое изоляции в любой точке обмотки потребителя L 1. Срабатывает оно и при малейшем токе утечки.

Резистор R 1 должен иметь сопротивление 1,5 - 2 Мом. Если одной рукой прикоснуться к заземленному металлическому предмету, а другой - к корпусу бытового прибора, оборудованного данным защитным устройством, то через человека проходит ток меньше 1 мА, что вполне безопасно. Тут же срабатывает автоматическая защита и отключает электроприбор от сети.

Для проверки работы устройства корпус электроприбора кратковременно соединяют отрезком провода с заземленной конструкцией - реле при этом должно сработать.

Карачев Н.

Защита аппаратуры при включении


Рис.4

В источниках питания мощной аппаратуры на транзисторах и микросхемах в фильтрах питания обычно используют конденсаторы, емкость которых превышает 10000 мкФ. Переходные процессы, возникающие при включении такой аппаратуры (в частности, зарядка этих конденсаторов), могут привести к выходу ее из строя. По этой причине в источники питания, в последнее время, вводят устройства, которые ограничивают ток в первичной обмотке сетевого трансформатора в первый момент после включения аппаратуры и предотвращают тем самым нежелательные эффекты.

Возможный вариант выполнения подобного устройства приведен на рисунке 4. Оно состоит из ограничительных резисторов и узла, замыкающего эти резисторы по истечению некоторого времени.

Бросок тока при включении аппаратуры до значения 5А ограничивают резисторы R 4- R 7. Использование здесь нескольких резисторов обусловлено лишь конструктивными соображениями. Их можно заменить на один резистор сопротивлением 40 Ом и мощностью рассеивания не менее 20 Вт или на другую последовательно - параллельную комбинацию соединения резисторов, обеспечивающую такие же сопротивление и мощность рассеивания.

Выбор номинала ограничительного резистора - это решение противоречивой задачи. С одной стороны, желательно иметь большое сопротивление, поскольку уменьшаются перегрузки в цепях источника питания при включения устройства и требуемая мощность рассеивания этого резистора, но с другой - сопротивление должно быть не очень большим, чтобы второй бросок тока, возникающий при замыкании ограничительного резистора, не был больше первоначального броска тока при включении устройства. Приведенные здесь параметры ограничительного резистора близки к оптимальным для аппаратуры, потребляющей от сети мощности 150…200 Вт.

При включении аппаратуры одновременно начинается процесс зарядки конденсаторов С2 и С3. Когда напряжение на них достигнет напряжения срабатывания реле К1 и оно сработает, то своими контактами замкнет резисторы R 4- R 7 и восстановит тем самым нормальный режим работы источника питания. Время задержки включения аппаратуры зависит в первую очередь от емкости конденсаторов С2 и С3, сопротивления резистора R 3, напряжения срабатывания реле К1 и составляет доли секунды.

В устройстве было использовано реле с напряжением срабатывания 24 В. Оно должно иметь контакты, обеспечивающие включение сетевой аппаратуры (220 В и ток несколько ампер),с которой будет использоваться это защитное устройство.

Мост, использованный в оригинале конструкции, рассчитан на рабочее напряжение 250 В и ток 1,5 А. Конденсаторы С3 и С4 можно заменить на один с емкостью 1000 мкФ.

Obvod zpozneneho startu.

« Amaterske Radio » , 1997,

A7-8, s.24

Защита электродвигателя от неполнофазного режима

Устройство защиты электродвигателя от неполнофазного режима, показанная на рис.5, реагирует на прерывания в подаче на трехфазный электродвигатель напряжения любой из трех фаз.


Рис.5

Нажатием на кнопку S 1 подают напряжение на катушку магнитного пускателя КМ1, включающего электродвигатель М1. Надежное срабатывание пускателя при его катушки, рассчитанной на 380 В переменного напряжения, меньшим по амплитуде пульсирующим напряжением обеспечивается за счет значительной постоянной составляющей последнего.

Одновременно со срабатыванием пускателя напряжение поступает на анод и управляющий электрод тиристора VS 1. Теперь конденсатор С1 подзаряжается через периодически открывающийся тиристор, напряжение на нем остается достаточным для удержания пускателя КМ1 в сработавшем состоянии. В случае пропадания напряжения любой из фаз тиристор прекращает открываться, конденсатор быстро разряжается и пускатель отключает двигатель от сети.

Яковлев В.

г. Шостка, Укранина

Аварийный выключатель

Много неприятностей доставляют перебои в электроснабжении. Особенно плохо то, что в момент подачи напряжения могут быть очень опасные скачки, которые, в лучшем случае, вызывают сбои процессора телевизора или DVD - плейера переводя их в включенный режим, а в худшем повреждают блок питания.


Рис.6

На рис.6 представлена схема аварийного реле, которое при отключении электроснабжения отключает аппаратуру от сети. А подача питания на аппаратуру происходит не одновременно с возобновлением электроснабжения, а только после нажатия пользователем кнопки S 1.

В основе схемы старое реле КУЦ-1 от систем дистанционного управления телевизоров типа «УСЦТ».

Узел защиты электрооборудования при авариях в электросети

Многие, хотя бы раз жизни, попадали в такую ситуацию, когда вместо однофазного напряжения 220 В переменного тока в квартиры вдруг начинало поступать двухфазное 380 В. Если такое такое событие не было замечено в первые секунды и квартирная электропроводка не имеет устройств защиты от перенапряжения, то вся включенная домашняя техника выходит из строя. Сам факт того, что в нормальной ситуации потенциал "нулевого” провода относительно "земли” не превышает нескольких вольт, а при аварии в трехфазных сетях конечного электроснабжения достигает 220 В и более, позволяет сделать простое устройство для защиты аппаратуры, схема на рис.7.


Рис.7

Если через электросчетчик проходят 220 В плюс-минус процентов 30, катушка мощного электромагнитного реле К1 обесточена. Через свободнозамкнутые контакты реле на нагрузки поступает номинальное напряжение питания.

Допустим, случилась авария и в результате «нулевой провод» оказался фазным. Так как вход «Заземление» защитного устройства, собранного по схеме 1, имеет надежное электрическое соединение с почвой, то на катушке реле появится напряжение 160…250 В переменного тока, что приводит к размыканию его контактов и обесточиванию нагрузок. Включенные встречно-последовательно стабилитроны VD 1, VD 2 устраняют возможное легкое гудение реле при нормальном электроснабжении. Резистор R 1 ограничивает ток через обмотку реле К1. Неоновая лампа тлеющего разряда HL 1 светится при аварии. Конденсатор С1 препятствует возникновению дуги при размыкании контактов реле.

Кашкаров А.

Схема:

Разработанное автором много лет назад и описанное в статье "Защита от тока" ("Моделист-конструктор", 1981, № 10, с. 29, 30) защитно-отключающее устройство срабатывало при появлении на незаземленном металлическом корпусе защищаемого прибора напряжения более 24 В относительно земли. Сегодня заземление корпусов приборов стало обязательным и представляется более правильным контролировать ток в заземляющем проводе. В случае нарушения изоляции между корпусом и сетью допустимое значение этого тока (4... 10 мА) будет превышено, что и послужит сигналом к отключению неисправного прибора от сети.

Устройство:
Схема устройства защиты, действующего по такому принципу, показана на рис. 1. Вилку ХР1 вставляют в сетевую розетку, оснащенную заземляющим контактом. К розетке XS1 подключают сетевую трехконтактную вилку защищаемого электроприбора. Электронный узел защитного устройства питается от сети через понижающий трансформатор Т2 и мостовой выпрямитель на диодах VD2-VD5. Напряжение питания микросхемы-таймера DA1 и усилителя на транзисторе VT1 стабилизировано с помощью стабилитрона VD6.

В разрыв провода, соединяющего заземляющие контакты вилки ХР1 и розетки XS1 (цепь РЕ) включена первичная обмотка трансформатора тока Т1. Напряжение, пропорциональное протекающему по ней току, выделяется на резисторе R1 и после выпрямления одно-полупериодным выпрямителем на диоде VD1 через усилитель постоянного тока на транзисторе VT1 поступает на вход S таймера DA1.

Если ток утечки отсутствует, напряжение на коллекторе транзистора и на входе таймера имеет высокий, а на выходе таймера (выв. 3) низкий логический уровень. При увеличении тока утечки сверх допустимого значения высокий уровень напряжения на коллекторе VT1 сменится низким, что разрешит работу таймера DA1. На его выходе появятся импульсы положительной полярности, первый из которых откроет тринистор VS1. Реле К1, разомкнув контакты, отключит нагрузку от сети. Мигание светодиода HL1 покажет, что защита сработала. Частота мигания (1 ...5 Гц) зависит от номиналов резисторов R7, R8 и конденсатора Сб.

После устранения утечки тринистор VS1 останется открытым, а контакты реле К1.1 - разомкнутыми. Для того чтобы подать на нагрузку сетевое напряжение, устройство защиты необходимо возвратить в исходное состояние: выключить на некоторое время, нажав на кнопку SB1, и вновь включить, отпустив ее.

Конденсаторы С1 и С4 устраняют ложные срабатывания от кратковременных помех в сети. Цепь R6C5 предотвращает запуск таймера в результате переходных процессов при включении питания. Цепь R9C8VD7 подавляет коммутационные выбросы напряжения на обмотке реле К1.

Печатная плата:

Печатная плата устройства защиты и расположение деталей на ней изображены на рис. 2.

Детали:
Транзистор КТ3102А можно заменить другим той же серии или серий КТ312, КТ315. Импортные аналоги таймера КР1006ВИ1 - NE555 и многие другие с цифрами 555 в обозначении. Тринистор КУ101Б в рассматриваемом устройстве можно заменить одним из серий КУ201, КУ202.
Реле К1 - РЭС47 исполнения РФ4.500.407-01 (сопротивление обмотки - 160...180 Ом). При мощности нагрузки более 1 кВт ее необходимо коммутировать с помощью реле с более мощными контактами, а установленное на плате реле К1 использовать как промежуточное.
Трансформатор тока Т1 изготовлен из согласующего трансформатора от трансляционного громкоговорителя. Магнитопровод трансформатора - стальной Ш8х10. Обмотка с меньшим числом витков удалена, а на ее место намотаны три витка изолированного провода диаметром около 2 мм - зто первичная обмотка трансформатора тока. Бывшая первичная обмотка согласующего трансформатора теперь становится вторичной. Ее выводы подключают к резистору R1. Трансформатор питания Т2 - любой понижающий с первичной обмоткой на 220 Вис двумя соединенными последовательно вторичными обмотками на 9 В, 100 мА или с одной вторичной на 15...18 В. Значение тока срабатывания защиты должно находиться в интервале 4...10 мА. Этого добиваются подборкой резистора R2, а при необходимости, и изменением числа витков первичной обмотки трансформатора тока Т1. Утечку в 10 мА можно имитировать, включив первичную обмотку трансформатора Т1 в сеть 220 В через резистор 22 кОм мощностью не менее 5 Вт.

Средством защиты от утечек служит специальное устройство защиты оборудования или сокращенно . Устройство вызывает срабатывание защиты, не дает току утечки достигнуть опасного значения и является основным средством защиты человека от поражения электрическим током.

Для комплексной защиты оборудования применяют вместе с . По принятым на сегодняшний момент нормам автоматы УЗО обязательны к установке в сети электроснабжения вне зависимости от назначения этих сетей.

Как работает

УЗО работает по принципу сравнения двух величин токов, которые идут через защитное устройство. В этом случае сравнивается ток на входе устройства и ток на выходе. В случае если эти величины отличаются, то происходит защитное срабатывание прибора.

Для проверки работоспособности прибора служит кнопка тест, при нажатии которой происходит пробное срабатывание по которому можно определить состояние защиты.

Как выбрать и не ошибиться

Независимо от назначения устройства подбираются по следующим параметрам:

  1. Нагрузочная способность. Для прибора важна величина тока, на который рассчитаны его силовые контакты. По номиналу чаще всего используются на 16А, 25А, 32А, 40А, 63А, 80А.
  2. Метод определения утечки. По типу определения утечки делятся на электронные, утечка в которых определяется электронным ключом, и на электромагнитные, значение утечки в которых снимается с магнитного сердечника. Электронные более доступны по цене, но имеют недостатки в работе в виде несрабатывания при пропадании одной из фаз.
  3. Чувствительность к току утечки. Чувствительность определяет способность устройства к срабатыванию. Самые чувствительные приборы на 10 мА тока утечки. Но их применение ограничено количеством потребителей из-за возможных ложных срабатываний и наличия естественных токов утечки.
  4. Тип тока цепи. По типу токов разделяются на срабатывающие от переменного тока и пульсирующего тока.

По количеству подключаемых фаз делятся на двухполюсные и четырехполюсные. Однополюсные для сети 220 В, трехполюсные для 380 В. В домах и частных домовладениях, по причине использования однофазной сети, используют однополюсные УЗО.

Для выбора устройства защиты необходимо определить его назначение. По назначению можно разделить на следующие типы:

  1. Бытовые – это однополюсные УЗО невысокой чувствительности с током нагрузки не более 50 А. Такие требования обусловлены большим количеством бытовых приборов и связанными с этим большими точками естественной утечки. Очень чувствительные будут постоянно ложно срабатывать. Нагрузочный ток в 50 А определяется параметрами счетчиков электроэнергии, устанавливаемыми в жилых помещениях, не превышающим этот номинал.
  2. Для промышленного применения – чувствительные четырехполюсные УЗО с большими номиналами тока. Эти требования обусловлены большими токами потребления промышленным оборудованием, использованием трехфазной сети и повышенными требованиями к его защите по причине его повышенной опасности и большой стоимости.
  3. Специализированные. К специализированным относятся противопожарные типа В. Они обладают высокой чувствительностью не только к утечкам переменного тока, но и к незначительным пульсациям постоянного тока.

Электронные УЗО более доступны по цене, но имеют недостатки в работе в виде несрабатывания при пропадании одной из фаз

Правила подключения

При подключении УЗО необходимо следовать следующим правилам:

  1. Устройство всегда должно устанавливаться после автоматических выключателей , так как оно не защищено от превышения током максимальных значений;
  2. Автоматические выключатели в цепи должны быть меньшего номинала , так как время срабатывания предохранителей велико и тока может быть достаточно для вывода его из строя;
  3. Защищаемые УЗО линии должны быть подключены к нему , иначе защита не будет срабатывать.
  4. Подключать прибор только по обозначениям производителя , например, категорически нельзя менять вход и выход прибора. Это наверняка вызовет неисправность и дальнейшую его негодность.
  5. Следует проверять надежность всех соединений и исключить вероятное искрение , которое, в свою очередь, может вызвать пожар.
  6. Все соединительные проводники должны быть хорошо изолированы друг от друга, не должны иметь повреждений изоляции, следов окисления. При появлении очагов коррозии, в среде с повышенной влажностью, утечки через окислы будут вызывать постоянные срабатывания защиты. Это может повлечь серьезные неисправности в подключенных потребителях;
  7. Корпусы устанавливаемых элементов не должны иметь видимых повреждений и дефектов.

При появлении очагов коррозии, в среде с повышенной влажностью, утечки через окислы будут вызывать постоянные срабатывания защиты

Порядок подключения

Важно помнить, что все работы с УЗО в электрощите выполняются при отключенном напряжении. Процесс монтажа можно разбить на 5 шагов:

  1. подготовка распределительного щита;
  2. разметка щита для установки всех элементов электросхемы;
  3. установка счетчика электроэнергии;
  4. установка автоматических выключателей;
  5. монтаж нулевых ;
  6. монтаж УЗО;
  7. подключение потребителей электроэнергии в сеть УЗО.

В процессе монтажа часто встречаются ошибки. Самые распространенные из них:

  1. Неверно выбранные типы элементов. Грубейшая ошибка – номинал входных автоматических выключателей превышает номинал УЗО. Схема в таком виде не только плохо защищает сеть, вызывает ложные срабатывания защиты, но и сама является потенциальным источником аварии;
  2. Установка устройства перед счетчиком. По причине наличия в УЗО немаленького магнитопровода показания счетчика не будут верными и представитель электросбытовой компании не примет такую конструкцию в эксплуатацию;
  3. Несоответствие схеме подключения нейтральных полюсов;
  4. Включение нейтралей по параллельной схеме;
  5. Ошибочное подключение защитного заземления к нейтрали.


Схема подключения «вводной автомат»

В настоящее время, как правило, используются трехпроводные домовые сети с защитным заземлением.

Первым в цепи установлен центральный автоматический выключатель. За ним включен счетчик электроэнергии и только после него идет УЗО. По известным правилам номинал УЗО превышает номиналы автоматических выключателей нагрузки на порядок. При подобной схеме важно обеспечить правильное подключение нулевого и фазного проводов.

  1. наличие только одного дорогостоящего УЗО;
  2. небольшой объем рабочего пространства, который занимает одно устройство.

Недостатком схемы является:

  1. трудности в поиске неисправности проводки;
  2. сложность подбора параметров под имеющихся потребителей.

Недостатки этой схемы устраняются распараллеливанием групп потребителей и установкой дополнительного УЗО.


Подключение к трехфазной сети с заземлением по схеме «отдельный автомат»

Электрическая схема крупного жилого объекта подразумевает наличие разнообразных потребителей энергии. Для таких приборов как мощный холодильник, стиральная машина, духовой шкаф, требуется отдельное УЗО. Это необходимо для защиты конкретного прибора и сохранения работоспособности других, не связанных с ним.

Самой безопасной схемой включения является трехпроводная схема с заземлением, а применив селективное четырехполюсное УЗО становится возможным подключение к трехфазной промышленной сети. При такой схеме обеспечивается и защита от повреждения изоляции цепи и от утечки.

Преимущества схемы «отдельный автомат»:

  1. удобство поиска утечки в цепи, поскольку плечи цепи имеют индивидуальные устройства.
  2. возможность подключать потребители гораздо большей мощности;
  3. эта схема обеспечивает самый высокий уровень защиты.

Недостатки схемы «отдельный автомат»:

  1. высокая цена из-за большого количества блоков;
  2. значительный объем, занимаемый схемой;
  3. невозможность постройки такой цепи без наличия трехфазного питания.

Схема питания от однофазного источника по функционалу практически равна предыдущей схеме. В ней можно отказаться от селективного УЗО и этим сократить стоимость, но нагрузочная способность этой сети будет гораздо меньше.


Схема подключения УЗО к трехфазной сети

Схема подключения без защитного заземления

Не везде и не всегда сети электроснабжения оборудованы защитным заземлением. Часто в частных домовладениях, построенных уже давно, проводка выполнена без возможности проведения заземления. В таком случае установка УЗО не только желательна, но и необходима для безопасности жильцов.

Как поведет себя устройство без заземления? Для того, чтобы УЗО выполняло свои функции нулевую шину нужно подключить на провод, идущий от силового ввода. В этом случае УЗО будет работать как бы само на себя.

На схеме буква N обозначает нейтральный провод. Поскольку заземление в этой схеме отсутствует, то присваивать это название другой линии некорректно.

В свете рассмотренных данных можно сказать, что никогда не нужно пренебрегать защитой. Несмотря на некоторые трудности, даже в двухпроводной линии, всегда есть возможность установки Устройства Защитного Отключения. Не стоит экономить на безопасности.

  • Применение УЗО в ванной комнате и бане необходимо. По причине повышенной влажности изоляция проводников служит недолго. Отсутствие защиты в цепи питания может быть смертельно опасно.
  • При использовании двухпроводной схемы включения ни в коем случае нельзя устанавливать самодельное устройство заземления. Самодельные системы заземления не связаны со сторонними потребителями. По этой причине никто не знает, какая фаза из трех окажется на вашем нулевом проводе при порыве магистральной линии.

Разработанное автором много лет назад и описанное в статье "Защита от тока" ("Моделист-конструктор", 1981, № 10, с. 29, 30) защитно-отключающее устройство срабатывало при появлении на незаземленном металлическом корпусе защищаемого прибора напряжения более 24 В относительно земли. Сегодня заземление корпусов приборов стало обязательным и представляется более правильным контролировать ток в заземляющем проводе. В случае нарушения изоляции между корпусом и сетью допустимое значение этого тока (4... 10 мА) будет превышено, что и послужит сигналом к отключению неисправного прибора от сети.



Рис. 1

Схема устройства защиты, действующего по такому принципу, показана на рис. 1. Вилку ХР1 вставляют в сетевую розетку, оснащенную заземляющим контактом. К розетке XS1 подключают сетевую трехконтактную вилку защищаемого электроприбора. Электронный узел защитного устройства питается от сети через понижающий трансформатор Т2 и мостовой выпрямитель на диодах VD2-VD5. Напряжение питания микросхемы-таймера DA1 и усилителя на транзисторе VT1 стабилизировано с помощью стабилитрона VD6.

В разрыв провода, соединяющего заземляющие контакты вилки ХР1 и розетки XS1 (цепь РЕ) включена первичная обмотка трансформатора тока Т1. Напряжение, пропорциональное протекающему по ней току, выделяется на резисторе R1 и после выпрямления одно-полупериодным выпрямителем на диоде VD1 через усилитель постоянного тока на транзисторе VT1 поступает на вход S таймера DA1.

Если ток утечки отсутствует, напряжение на коллекторе транзистора и на входе таймера имеет высокий, а на выходе таймера (выв. 3) низкий логический уровень. При увеличении тока утечки сверх допустимого значения высокий уровень напряжения на коллекторе VT1 сменится низким, что разрешит работу таймера DA1. На его выходе появятся импульсы положительной полярности, первый из которых откроет тринистор VS1. Реле К1, разомкнув контакты, отключит нагрузку от сети. Мигание светодиода HL1 покажет, что защита сработала. Частота мигания (1 ...5 Гц) зависит от номиналов резисторов R7, R8 и конденсатора Сб.

После устранения утечки тринистор VS1 останется открытым, а контакты реле К1.1 - разомкнутыми. Для того чтобы подать на нагрузку сетевое напряжение, устройство защиты необходимо возвратить в исходное состояние: выключить на некоторое время, нажав на кнопку SB1, и вновь включить, отпустив ее.

Конденсаторы С1 и С4 устраняют ложные срабатывания от кратковременных помех в сети. Цепь R6C5 предотвращает запуск таймера в результате переходных процессов при включении питания. Цепь R9C8VD7 подавляет коммутационные выбросы напряжения на обмотке реле К1.



Рис. 2

Печатная плата устройства защиты и расположение деталей на ней изображены на рис. 2. Транзистор КТ3102А можно заменить другим той же серии или серий КТ312, КТ315. Импортные аналоги таймера КР1006ВИ1 - NE555 и многие другие с цифрами 555 в обозначении. Тринистор КУ101Б в рассматриваемом устройстве можно заменить одним из серий КУ201, КУ202.

Реле К1 - РЭС47 исполнения РФ4.500.407-01 (сопротивление обмотки - 160...180 Ом). При мощности нагрузки более 1 кВт ее необходимо коммутировать с помощью реле с более мощными контактами, а установленное на плате реле К1 использовать как промежуточное.

Трансформатор тока Т1 изготовлен из согласующего трансформатора от трансляционного громкоговорителя. Магнитопровод трансформатора - стальной Ш8х10. Обмотка с меньшим числом витков удалена, а на ее место намотаны три витка изолированного провода диаметром около 2 мм - зто первичная обмотка трансформатора тока. Бывшая первичная обмотка согласующего трансформатора теперь становится вторичной. Ее выводы подключают к резистору R1. Трансформатор питания Т2 - любой понижающий с первичной обмоткой на 220 Вис двумя соединенными последовательно вторичными обмотками на 9 В, 100 мА или с одной вторичной на 15...18 В. Значение тока срабатывания защиты должно находиться в интервале 4...10 мА. Этого добиваются подборкой резистора R2, а при необходимости, и изменением числа витков первичной обмотки трансформатора тока Т1. Утечку в 10 мА можно имитировать, включив первичную обмотку трансформатора Т1 в сеть 220 В через резистор 22 кОм мощностью не менее 5 Вт.