Большое количество воды реабсорбируется в. Процесс реабсорбции. Пороговые и непороговые вещества

Реабсорбция дословно означает - обратное поглощение жидкости. Имеется ввиду функция впитывания из мочи разных элементов и их транспортировка назад в лимфу и кровь. Такими веществами могут выступать белок, декстроза, натрий, аминокислоты, вода и другие, органические и неорганические соединения.

Общие сведения

Обратное всасывание органических веществ происходит через почечные канальца с помощью особых клеток - «переносчиков». Они играют роль своеобразного фильтра и в них отсеиваются те элементы, которых в организме переизбыток или в которых нет нужды (продукты распада). К примеру, при диабете организм не нуждается в сахаре и он автоматически будет оставаться в ионных каналах.

Так называемый фильтрационный аппарат окружен апикальной мембраной, в которой и сосредоточены «транспортеры», именно они ответственны за доставку веществ к другим клеткам. Они выполняют функцию насосов и работают на энергии, которую вырабатывают митохондрии. Таким образом, необходимые соединения попадают в межклеточную жидкость, а затем в русло сосудов.

Виды реабсорбции


Схема процесса реабсорбции в канальцах почек.

Прием питательных веществ, происходит через разные отделы каналов, в этой зависимости различают два вида реабсорбции:

Проксимальная

Она обуславливает транспортировку в организм из первичной мочи аминокислот, белка, декстрозы и витаминов. Поглощение в этом случае происходит почти в полном объеме, отфильтровывается только 1/3 всего объема. Механизм реабсорбции воды пассивный и находится в зависимости от содержания в моче гидрохлорида и щелочи. Бикарбонат может всасываться как быстрым, так и медленным способом - при вхождении и выведении из канальцев, элемент ведет себя динамично, а при прохождении через мембрану поведение можно охарактеризовать как заторможенное. В роли переносчика здесь выступает гидрокарбонат.

При прохождении через канальца объем мочи уменьшается - так как жидкость реабсорбируется пассивно и, это приводит к высокой концентрации бикарбоната. Они будут усваиваться вместе с жидкостью. Такая заторможенность в канальцах обеспечивает консистенцию мочи, сходную с кровяной плазмой. Кроме того, в проксимальных отделах поглощаются фосфаты, катионы, ионы калия, гидрохлорида, мочевины и мочевой кислоты.

Аминокислоты и декстроза переносятся в кровь при помощи клеток эпителия, которые находятся в щеточной каемке апикальной мембраны. Поглощение данных веществ возможно только при наличии одновременной связи с гидрохлоридом. Чтобы это осуществить - концентрация должна быть низкой. Поэтому в процессе транспортировки бикарбоната активно удаляется из клетки - такой процесс называют симпортом.

Проксимальная реабсорбция глюкозы требует соединения ее молекулы с транспортирующей клеткой. Но в том случае, когда ее содержание в первичной моче слишком велико - происходит перегруз возможностей переносчиков. Это ведет к тому, что этот элемент уже не сможет попадать обратно в кровь. И соответственно, концентрация этой субстанции в конечной моче увеличена. Из этого можно сделать вывод, что достигнут почечный порог выведения или достигнута величина максимального проточного транспорта вещества.

Допустимое содержание сахара в крови различно для мужчин и женщин. Для первых этот показатель равен 375 мг/мин, а для вторых -303 мг/мин. Глюкоза является примером пороговых веществ, т. е тех, которые имеют предельную концентрацию. Примером же соединений, которые не всасываются в кровь или мало всасываются, могут служить инулин, манитол, сульфаты, мочевина. Их еще называют непороговыми. Подразумевается, что у них отсутствует порог выведения. В процессе проксимального поглощения пептиды и белки почти полностью возвращаются в кровь и лимфу. Лишь малая их доля содержится в конечной моче.

Дистальная

Этот вид реабсорбции гораздо меньше проксимальной. Но именно дистальное поглощение веществ влияет на конечный состав мочи и ее концентрацию. В этих отделах канальцев щелочь проходит реабсорбцию активно, а хлорид, наоборот, - пассивно. Активно транспортируются калий, ионы кальция и фосфаты. К тому же, благодаря такому элементу, как вазопрессин - увеличевается усваиваемость мочевины и она попадает в межклеточную жидкость.


Схема мочевыделительной системы.

Почечная система состоит из собирательных трубочек и петли Гентле. Такое строение дает почкам возможность образования мочи различной концентрации и обусловливает усиленную реабсорбцию. В почках она движется в разных направлениях, а фильтрация происходит в нефроне. Фильтрация в нефроне обуславливает образование более насыщенного раствора в районе нисходящего колена и менее насыщенного из-за количества гидрокарбоната - в области восходящего колена петли Гентле. Собирательная трубочка водонепроницаема и возможность реабсорбции существует только при наличии вазепрессина. Из-за этого воды скапливается мало и повышается насыщенность конечной мочи.

2 этапом образования мочи является реабсорбция - обратное всасывание воды и растворенных в ней веществ. Это точно доказано в прямых опытах с анализом мочи, полученной путем микропункции из различных отделов нефрона.

В отличие от образования первичной мочи, которая является результатом физико-химических процессов фильтрации, реабсорбция в значительной степени осуществляется за счет биохимических процессов клеток канальцев нефрона, энергия для которых черпается из распада макроэргов. Это подтверждается тем, что после отравления веществами блокирующими тканевое дыхание (цианиды) резко ухудшается обратное всасывание натрия, а блокада фосфорилирования монойодацетоном резко угнетает реабсорбцию глюкозы. Реабсорбция ухудшается также при понижении обмена веществ в организме. Например, при охлаждении организма на морозе и диурез при этом возрастает.

Наряду с пассивными процессами транспорта (диффузия, силы осмоса) в реабсорбции большую роль играют пиноцитоз, электростатические взаимодействия между различно заряженными ионами и т.д. Различают также 2 вида активного транспорта:

первично-активный транспорт осуществляется против электрохимического градиента и при этом транспорт происходит за счет энергии АТФ,

вторично-активный транспорт осуществляется против концентрационного градиента и при этом энергия клетки не тратится. С помощью этого механизма реабсорбируется глюкоза, аминокислоты. При этом виде транспорта органическое вещество входит в клетку проксимального канальца с помощью переносчика, который обязательно должен присоединить ион натрия. Этот комплекс (переносчик + органическое вещество + ион натрия) перемещается в мембране щеточной каймы, этот комплекс за счет разности концентраций Na + между просветом канальца и цитоплазмой поступает в клетку, т.е. в канальце ионов натрия больше, чем в цитоплазме. Внутри клетки комплекс диссоциирует и ионы Na + за счет Na-K насоса выводится из клетки.

Реабсорбция осуществляется во всех отделах нефрона, за исключением капсулы Шумлянского-Боумена. Однако характер обратного всасывания и интенсивность в различных отделах нефрона неодинакова. В проксимальных отделах нефрона реабсорбция идет очень интенсивно и мало зависит от водно-солевого обмена в организме (обязательная, облигатная). В дистальных отделах нефрона реабсорбция очень изменчива. Ее называют факультативной реабсорбцией. Именно реабсорбция в дистальных канальцах и собирательных трубках в большей степени, чем в проксимальном отделе определяет функцию почки как органа гомеостаза, регулирующего постоянство осмотического давления, рН, изотонии и объема крови.

Реабсорбция в различных отделах нефрона

Реабсорбция ультрафильтрата происходит кубовидным эпителием проксимального канальца. Здесь имеют большое значение микроворсинки. В этом отделе полностью реабсорбируется глюкоза, аминокислоты, белки, витамины, микроэлементы, значительное количество Na + , Са + , бикарбонатов, фосфатов, Cl - , К + и H 2 О. В последующих отделах нефронах всасываются только ионы и Н 2 О.

Механизм всасывания перечисленных веществ неодинаков. Самым значительным по объему и энергетическим затратам занимает реабсорбция Na + . Она обеспечивается как пассивным, так и активными механизмами и происходит во всех отделах канальцев.

Активная реабсорбция Nа вызывает пассивный выход из канальцев ионов Сl - которые следуют за Na + вследствие электростатического взаимодействия: положительные ионы увлекают за собой отрицательно заряженный Сl - и др. анионы.

В проксимальных канальцах реабсорбируется около 65 -70% воды. Этот процесс осуществляется за счет разности осмотического давления - пассивно. Переход воды из первичной мочи выравнивает осмотическое давление в проксимальных канальцах до уровня его в тканевой жидкости. Из фильтрата реабсорбируется также 60-70% кальция и магния. Дальнейшая их реабсорбция продолжается в петле Генли и дистальных канальцах и с мочой выделяется только около 1% профильтровавшегося кальция и 5-10% магния. Реабсорбция кальция и в меньшей степени магния регулируется паратгормоном. Паратгормон повышает реабсорбцию кальция и магния и снижает реабсорбцию фосфора. Кальцитонин оказывает противоположное действие.

Таким образом, в проксимальном извитом канальце реабсорбируются все белки, вся глюкоза, 100% аминокислот, 70-80% воды, а, Сl, Mg, Ca. В петле Генли за счет избирательной проницаемости ее отделов для натрия и воды дополнительно еще реабсорбируется 5% ультрафильтрата и в дистальную часть нефрона поступает 15% объема первичной мочи, которая активно обрабатывается в извитых канальцах и собирательных трубках. Объем окончательной мочи всегда определяется водным и солевым балансом организма и может колебаться от 25 л в сутки (17 мл/мин) и до 300 мл (0,2 мл/мин).

Реабсорбция в дистальных отделах нефрона и собирательных трубках обеспечивает возвращение в кровь идеальную в осмотическом и солевом отношении жидкости, поддерживая постоянство осмотического давления, рН, водный баланс и стабильность концентрации ионов.

Содержание многих веществ в окончательной моче во много раз выше, чем в плазме и первичной моче, т.е. проходя по канальцам нефрона, первичная моча концентрируется. Отношение концентрации вещества в конечной моче к концентрации в плазме называют концентрационным индексом . Этот индекс характеризует процессы, которые происходят в системе канальцев нефрона.

Реабсорбция глюкозы

Концентрация глюкозы в ультрафильтрате такая же, как и в плазме,но в проксимальном отделе нефрона она практически полностью реабсорбируется. В нормальных условиях за сутки с мочой выделяется не более 130 мг. Обратное всасывание глюкозы осуществляется против высокого концентрационного градиента, т.е. реабсорбция глюкозы происходит активно, причем она переносится с помощью механизма вторично-активного транспорта. Апикальная мембрана клетки, т.е. мембрана, обращенная в сторону просвета канальца, пропускает глюкозу только в одном направлении - в клетку, а обратно в просвет канальца не пропускает.

В апикальной мембране клетки проксимального канальца имеется специальный переносчик глюкозы, но глюкоза, прежде чем взаимодействовать с переносчиком, должна превратиться в глю-6 фосфат. В мембране имеется фермент глюкокиназа, который обеспечивает фосфорилирование глюкозы. Глю-6-фосфат соединяется с переносчиком апикальной мембраны одновременно с натрием .

Этот комплекс за счет разности концентрации натрия (натрия в просвете канальца больше, чем в цитоплазме ) перемещается в мембране щеточной каймы и попадает внутрь клетки. В клетке этот комплекс диссоциирует. Переносчик возвращается за новыми порциями глюкозы, а в цитоплазме остаются глю-6-фосфат и натрий. Глю-6-фосфат под влиянием фермента глю-6-фосфотазы распадается на глюкозу и фосфатную группу. Фосфатная группа используется для превращения АДФ в АТФ. Глюкоза перемещается к базальной мембране, где соединяется с другим переносчиком, который транспортирует ее через мембрану в кровь. Транспорт через базальную мембрану клетки носит характер облегченной диффузии и не требует присутствия натрия.

Реабсорбция глюкозы находится в зависимости от ее концентрации в крови. Глюкоза полностью всасывается, если ее концентрация в крови не превышает 7-9 ммоль/л, в норме ее от 4,4 до 6,6 ммоль/л. Если содержание глюкозы оказывается выше, то часть ее не реабсорбируется и выделяется с окончательной мочой - наблюдается глюкозурия.

На этом основании введем понятие о пороге выведения. Порогом выведения (порогом реабсорбции)называют концентрацию вещества в крови, при которой оно не может полностью реабсорбироваться и попадает в конечную мочу. Для глюкозы это составляет более 9 ммоль /л, т.к. при этом мощность систем переносчика оказывается недостаточной и сахар поступает в мочу. У здоровых людей это может наблюдаться после поступления больших его количеств (алиментарная (пищевая) глюкозурия).

Реабсорбция аминокислот

Аминокислоты также полностью реабсорбируются клетками проксимального канальца. Существует несколько специальных систем реабсорбции для нейтральных, двухосновных, дикарбоновых аминокислот и иминокислот.

Каждая из этих систем обеспечивает реабсорбцию нескольких аминокислот одной группы:

1 группа-глицин, пролин, оксипролин, аланин, глютаминовая кислота, креатин;

2 группа-двухосновные-лизин, аргинин, орнитин, гистидин, цистин;

3 группа-лейцин, изолейцин.

4 группа - Иминокислоты-органические кислоты, содержащие в молекуле двухвалентную иминогруппу (= NH), гетероциклические иминокислоты пролин и оксипролин входят в состав белков и обычно рассматриваются как аминокислоты.

В пределах каждой системы имеются конкурентные отношения между переносом отдельных аминокислот входящих в данную группу. Поэтому, когда одной аминокислоты много в крови, то переносчик не успевает транспортировать все аминокислоты этого ряда - они выделяются с мочой. Транспорт аминокислот происходит так же, как и глюкозы, т.е. по механизму вторично-активного транспорта.

Реабсорбция белков

За сутки в фильтрат поступает 30-50 г белка. Почти весь белок полностью реабсорбируется в канальцах проксимального отдела нефрона, и у здорового человека в моче только его следы. Белки, в отличие от других веществ, реабсорбируясь попадают в клетки с помощью пиноцитоза. (Молекулы профильтровавшегося белка адсорбируются на поверхностной мембране клетки с образованием, в конечном счете, пиноцитозной вакуоли. Эти вакуоли сливаются с лизосомой, где под влиянием протеолитических ферментов белки расщепляются и их фрагменты переносятся в кровь через базальную цитоплазматическую мембрану). При заболевании почек количество белка в моче возрастает - протеинурия. Она может быть связана либо с нарушением реабсорбции, либо с увеличением фильтрации белка. Может возникать после физической нагрузки.

Выводимые из организма продукты обмена веществ, вредные для организма, активной реабсорбции не подвергаются. Те соединения, которые не способны проникнуть в клетку путем диффузии, совершенно не возвращаются в кровь и выделяются с мочой в максимально концентрированном виде. Это сульфаты и креатинин, их концентрация в окончательной моче в 90-100 раз больше, чем в плазме - это беспороговые вещества. Конечные продукты азотистого обмена (мочевина и мочевая кислота) могут диффундировать в эпителий канальцев, поэтому они частично реабсорбируются, и их концентрационный индекс ниже, чем сульфатов и креатинина.

Из проксимального извитого канальца изотоничная моча попадает в петлю Генле. Сюда поступает примерно 20-30% фильтрата. Известно, что в основе работы петли Генле, дистальных извитых канальцев и собирательных трубочек лежит механизм противоточно-множительной канальцевой системы.

Моча двигается в этих канальцах в противоположных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются (“умножаются”) за счет деятельности другого колена.

Принцип противоточной системы широко распространен в природе и технике. Это технический термин, которым определяют движение двух потоков жидкости или газов в противоположных направлениях, создающие выгодные условия для обмена между ними. Например, в конечностях арктических животных артериальные и венозные сосуды располагаются близко, кровь течет в параллельно расположенных артериях и венах. Поэтому артериальная кровь согревает охлажденную венозную кровь, движущуюся к сердцу. Контакт между ними оказывается биологически выгодным.

Примерно так устроена и работает петля Генле и остальные отделы нефрона, а механизм противоточно - множительной системы существует между коленами петли Генле и собирательными трубками.

Рассмотрим, как работает петля Генле. Нисходящий отдел располагается в мозговом слое и тянется до вершины почечного сосочка, где изгибается на 180и переходит в восходящий отдел, расположенный параллельно нисходящему. Функциональное значение различных отделов петли неодинаково. Нисходящий отдел петли хорошо проницаем для воды, а восходящий водонепроницаем, но активно реабсорбирует натрий, который повышает осмолярность ткани. Это приводит к еще большему выходу воды из нисходящей части петли Генле по осмотическому градиенту (пассивно).

В нисходящее колено поступает изотоничная моча, а на вершине петли концентрация мочи увеличивается в 6-7 раз за счет выхода воды, поэтому в восходящее колено поступает концентрированная моча. Здесь в восходящем колене происходит активная реабсорбция натрия и всасывание хлора, вода остается в просвете канальца и в дистальный каналец поступает гипотоническая жидкость (200 осмоль/л). Между сегментами колена петли Генле постоянно существует осмотический градиент в 200 миллиосмолей (1 осмоль = 1000 миллиосмоль - количество вещества, которое развивает в 1 литре воды осмотическое давление в 22,4 атм). По всей длине петли суммарное различие осмотического давления (осмотический градиент или перепад) равен 200 миллиосмолей.

Мочевина также циркулирует в поворотно-противоточной системе почки и участвует в сохранении высокой осмолярности в мозговом веществе почки. Мочевина выходит из собирательной трубки (при движении конечной мочи в лоханку). Попадает в интерстиций. Затем секретируется в восходящее колено петли нефрона. Далее поступает в дистальный извитой каналец (с током мочи), и снова оказывается в собирательной трубке. Т.о., циркуляция в мозговом слое является механизмом сохранения высокого осмотического давления, которое создает петля нефрона.

В петле Генле дополнительно реабсорбируется еще 5% от исходного объема фильтрата и из восходящего отдела петли Генле в извитые дистальные канальцы поступает около 15% объема первичной мочи.

Важную роль в сохранении высокого осмотического давления в почке играют прямые почечные сосуды, которые, как и петля Генле, образуют поворотно-противоточную систему. Нисходящие и восходящие сосуды идут параллельно петле нефрона. Кровь, движущаяся по сосудам, проходя через слои с постепенно понижающейся осмолярностью, отдает межклеточной жидкости соли и мочевину и захватывает воду. Т.о. противоточная система сосудов представляет шунт для воды, благодаря чему создаются условия для диффузии растворенных веществ.

Обработка первичной мочи в петле Генле заканчивает проксимальную реабсорбцию мочи, за счет которой из 120 мл/мин первичной мочи в кровь возвращается 100-105 мл/мин, а 17 мл идет дальше.

Выведение из тела продуктов метаболизма совершается за счет мочеобразования, в основе которого лежит реабсорбция отфильтрованных ранее соединений. Именно путем обратного всасывания поддерживается гомеостаз крови и формируется конечная моча с продуктами распада белковых веществ, ионами, токсинами и компонентами лекарственных средств.

Реабсорбция – важный процесс в почках по обратному всасыванию частиц крови и образованию конечной мочи с ненужными и излишними веществами, которые затем выводятся из тела человека.

Что такое реабсорбция?

Для лучшего понимания процесса необходимо ориентироваться в механизме работы почечных структур и . В структурно-функциональной единице органа, нефроне, непрерывно происходят три процесса, поддерживающие ионное постоянство крови и обеспечивающие выведение продуктов метаболизма из организма человека. При фильтрации образуется первичная моча, которая из плазмы крови переходит в капсулу Боумена. Далее, протекает сам процесс реабсорбции - обратное всасывание в кровеносные сосуды воды, белковых молекул, глюкозы, и некоторых соединений органики и неорганики в канальцах почек, сопровождаемое секрецией. То есть следует второй этап мочеобразования - транспорт необходимых для поддержания гомеостаза веществ из первичной мочи обратно в лимфу и плазму.

Виды реабсорбции в почках

В нефроне клетки каждого участка выполняют неодинаковую функцию по причине разного строения почечных канальцев. На основе анатомических особенностей фильтрационной системы выделяют два типа обратного всасывания, имеющие различия в видах и количестве транспортируемых веществ, а также механизмах регуляции процессов, которые определяются осмотическим давлением, содержанием некоторых ионов в моче и антидиуретическими гормонами.

Проксимальное всасывание

В эпителии канальцев осуществляется интенсивная реабсорбция воды пассивным методом под влиянием содержания щелочи и гидрохлорида, тем самым, уменьшая объем элементов первичной мочи на 1/3. Прохождение веществ осуществляется сквозь высокопроницаемые канальцевые стенки. При проксимальной реабсорбции переносу подвергаются ионы натрия, хлора, калия, бикарбонатов, белков с аминокислотами, продукты мочевины, декстрозы и витамины. Основываясь на степени канальцевого транспорта, выделяют классификацию компонентов мочи:

  • Пороговые. Реабсорбция глюкозы, белков, аминокислот требует наличия специальных почечных молекул-переносчиков, соединяясь с которыми становится возможно прохождение образованного комплекса через мембрану эпителиальных клеток канальца. Если содержание в образовавшейся после фильтрации моче вещества больше количества необходимых молекул, превышается почечный порог выведения и дальнейший транспорт становится невозможен.
  • Непороговые соединения реабсорбируются в гораздо меньшем объеме (мочевина) или полностью не поддаются всасыванию, следовательно не имея своего максимального порога.

Дистальная реабсорбция

Объем всасываемых веществ значительно уменьшается, но именно этот процесс определяет состав и концентрацию конечной мочи.

Реабсорбция натрия, кальция, калия и фосфатов проходит активно, а для хлора характерен пассивный транспорт. Проницаемость мембран дистальных канальцев нефрона регулируется вазопрессином, который непосредственно влияет на усваяемость количества мочевины и ее попадание в межклеточное вещество.

Каков механизм процесса и от чего он зависит?


Механизм реабсорбции в почках происходит за счёт законов физики, химии и энергии организма.

Скорость и качество реабсорбции поддается влиянию содержания в плазме белков, глюкозы, некоторых ионов и других соединений, качества питания, образа жизни, состояния выделительной системы и наличия определенных заболеваний. Существуют несколько способов переноса веществ через стенку почечных канальцев, на основе которых выделяют такие виды транспорта:

Механизм прохождения веществ через мембраны
Вид Переносимые вещества Процессы в основе
Активный Глюкоза, калий, магний Вещества реабсорбируются из зоны их более низкой концентрации в зону высокой, затрачивается энергия организма
Пассивный Вода, мочевина, бикарбонаты Вещества переходят из зоны низкой концентрации в зону высокой
Пиноцитоз Белки Вещество взаимодействует с рецепторами и захватывается мембраной эпителия в почечных канальцах

С какими нарушениями можно столкнуться?

В зависимости от этиологии и механизма патологического процесса можно выделить такие основные группы причин нарушения реабсорбции:

  • почечная недостаточность, воспалительные и дистрофические процессы в органе, патологии непосредственно в канальцах;
  • нефротические и нефритические синдромы, сопровождаемые нарушением мочеотделения;
  • патологии эндокринной системы, а особенно нарушения в синтезе гормонов, оказывающих воздействие на ионный обмен;
  • изменения концентрации в моче некоторых соединений (глюкозы, водорода).

Первичная моча, проходя по канальцах и уборочных трубочках, перед тем как превратиться в конечную мочу, претерпевает значительные изменения. Разница состоит не только в ее количестве (с 180 л остается 1-1,5 л), но и качества. Некоторые вещества, нужные организму, полностью исчезают из мочи или их становится гораздо меньше. Происходит процесс реабсорбции. Концентрация других веществ во много раз увеличивается: они концентрируются при реабсорбции воды. Еще другие вещества, которых вообще не было в первичной мочи,
появляются в конечной. Это происходит в результате их секреции.
Процессы реабсорбции могут быть активными или пассивными. Для осуществления активного процесса необходимо, чтобы были специфические транспортные системы и энергия. Пассивные процессы происходят, как правило, без затраты энергии по законам физики и химии.
Канальцевая реабсорбция происходит во всех отделах, но ее механизм в разных частях неодинакова. Условно можно выделить С отделы: проксимальный извитой каналец, петля нефрона и дистальный извитой каналец С уборочной трубочкой.
В проксимальных извитых канальцах полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы. В этом же отделе реабсорбируется около 2/3 воды и неорганических солей Na +, К + Са2 +, Mg2 +, Cl-, НС07, т.е. вещества, которые нужны организму для его деятельности. Механизм реабсорбции главным образом прямо или косвенно связан с реабсорбцией Na +.
Реабсорбция натрия. Большая часть Na + реабсорбируется против градиента концентрации за счет энергии АТФ. Реабсорбция Na + осуществляется в 3 этапа: перенос иона через апикальную мембрану эпителиальных клеток канальцев, транспортировки в базальной или латеральной мембраны и перенос через указанные мембраны в межклеточную жидкость и в кровь. Основной движущей силой реабсорбции является перенос Na + с помощью Na +, К +-АТФ-азы
через базолатерального мембрану. Это обеспечивает постоянное отток ионов с кдитин. Вследствие этого Na + по градиенту концентрации с помощью специальных образований эндоплазматического ретикулума поступает к мембранам, возвращенных в межклеточной среды.
Вследствие этого постоянно действующего конвейера концентрация ионов внутри клетки и особенно вблизи апикальной мембраны становится гораздо ниже, чем с другой ее стороны, это способствует пассивному поступлению Na + в клетку по ионному градиенту. Таким образом,
2 этапа натриевой реабсорбции клетками канальцев являются пассивными и только один, конечный, требует затрат энергии. Кроме того, часть Na + реабсорбируется пассивно по межклеточных промежутках вместе с водой.
Глюкоза. Глюкоза реабсорбируется вместе с транспортом Na + В апикальной мембране клеток есть специальные транспортеры. Это белки
3 молекулярной массой 320 000, которые в начальных отделах проксимального канальца переносят друг Na + и одну молекулу глюкозы (постепенное уменьшение концентрации глюкозы в моче приводит к тому, что в следующей области канальца для переноса одной молекулы глюкозы используется уже два Na +). Движущей силой этого процесса является также электрохимический градиент Na + На противоположной стороне клетки комплекс Na - глюкоза - переносчик распадается на три элемента. Вследствие этого освобожден переносчик возвращается на свое прежнее место и снова приобретает способность переносить новые комплексы Na + и глюкозы. В клетке концентрация глюкозы увеличивается, благодаря чему образуется градиент концентрации, который направляет его в базально-латеральных мембран клетки и обеспечивает выход в межклеточную жидкость. Отсюда глюкоза поступает в кровеносные капилляры и возвращается в общий кровоток. Апикальная мембрана не пропускает глюкозу обратно в просвет канальца. Транспортные переносчики глюкозы содержатся лишь в проксимальном отделе канальцев, поэтому глюкоза реабсорбируется только здесь.
В норме при обычном уровне глюкозы в крови, а следовательно и концентрации ее в первичной мочи, реабсорбируется вся глюкоза. Однако при повышении уровня глюкозы в крови более 10 ммоль / л (около 1,8 г / л) мощность транспортных систем становится недостаточной для реабсорбции.
Первые следы нереабсорбованои глюкозы в конечной моче обнаруживаются при превышении его концентрации в крови. Чем выше концентрация глюкозы в крови, тем большее количество нереабсорбованои глюкозы.
До концентрации ее 3,5 г / л это увеличение еще не прямо пропорционально, поскольку в процесс еще не включается часть транспортеров. Но, начиная с уровня 3,5 г / л, выведение глюкозы с мочой становится лрямо пропорционален концентрации ее в крови. У мужчин полная нагрузка системы реабсорбции наблюдается при поступлении 2,08 ммоль / мин (375 мг / мин) глюкозы, а у женщин-1, 68 ммоль / мин (303 мг / мин) из расчета на 1,73 м2 поверхности тела.
При неушкодж? Них почках появление глюкозы в моче, например при сахарном диабете, является следствием превышения пороговой концентрации (10 ммоль / л) глюкозы в крови.
Аминокислоты. Реабсорбция аминокислот происходит по такому же механизму, как и реабсорбция глюкозы. Полная реабсорбция аминокислот происходит уже в начальных отделах проксимальных канальцев. Этот процесс таксйк связан с активной реабсорбцией Na + через апикальную мембрану клеток. Выявлено 4 типа транспортных систем: а) для основных б) для кислых в) для гидрофильных г) для гидрофобных аминокислот. С клетки аминокислоты пассивно по градиенту концентрации проходят через базальную мембрану в межклеточную жидкость, а оттуда - в кровь. Появление аминокислот в моче может быть следствием нарушения транспортных систем или очень высокой концентрации его в крови. В последнем случае может проявляться эффект, который по механизму напоминает глюкозурию - перегрузка транспортных систем. Иногда наблюдается конкуренция кислот одного типа за общий переносчик.
Белки. Механизм реабсорбции белков значительно отличается от механизма реабсорбции описанных соединений. Попадая в первичную 0, ечу, небольшое количество белков в норме почти полностью реабсорбируется путем пиноцитоза. В цитоплазме клеток проксимальных канальцев белки распадаются при участии лизосомальных ферментов. Аминокислоты, которые образуются, по градиенту концентрации из клетки поступают в межклеточную жидкость, а оттуда - в кровеносные капилляры. Таким путем может реабсорбуватися до 30 мг белка за 1 мин. При повреждении клубочков в фильтрат попадает больше белков и часть может поступать в мочу (протеинурия).
Реабсорбция воды. Процессы реабсорбции воды происходит во всех отделах нефрона. Но механизмы реабсорбции в различных отделах разные. В проксимальных извитых канальцах реабсорбируется около% воды. Около 15% первичной мочи реабсорбируется в петле нефрона и 15%-в дистальных извитых канальцах и собирательных трубочках. В конечной мочи, как правило, остается только 1% воды первичного фильтрата. Причем в первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется. В дистальных отделах реабсорбция регулируется в зависимости от потребности организма: вода, которая попала сюда, может задерживаться в организме или выводиться с мочой.
В основе реабсорбции воды в проксимальных канальцах лежат процессы осмоса. Вода реабсорбируется вслед за ионами. Основным ионом, обеспечивающим пассивное всасывание воды, является Na +. Реабсорбция других веществ (углеводов, аминокислот и др.)., Которая осуществляется в этих отделах нефрона, также способствует всасыванию воды.
Реабсорбция воды и электролитов в петле нефрона (поворотно-протипоточний механизм). Вследствие указанных изменений в петлю нефрона поступает моча, которая является изотоническим по окружающей межклеточной жидкости. Механизм реабсорбции воды и Na + и Сl-в данном участке нефрона существенно отличается от такового в других отделах. Здесь вода реабсорбируется согласно механизму поворотно-протипоточнои системы. В ее основе лежат особенности расположения восходящих и нисходящих частей в непосредственной близости друг от друга. Параллельно с этим вглубь мозгового вещества идут уборочные трубочки и кровеносные капилляры.
Поворотно-протипоточний механизм определяется следующими функциональными характеристиками почек: а) глубже в мозговое вещество опускается петля нефрона, тем выше становится осмотическое давление окружающей межклеточной жидкости (с 300 мосм / л в корковом веществе почки в 1200-1450 мосм / л на верхушке сосочка) б) восходящий отдел не достаточно проницаем для воды в) эпителий восходящего отдела активно, с помощью транспортных систем, скачивает Na + и Си-г
Активное выкачивание NaCl эпителия восходящего отдела обусловливает повышение осмотического давления межклеточной жидкости. Благодаря этому вода диффундирует сюда нисходящего отдела петли нефрона. В начальный отдел нисходящей части поступает фильтрат, который имеет низкий осмотическое давление по сравнению с окружающей веществом. Моча по мере спуска по нисходящему отдела, отдавая воду, имеет постоянный осмотический градиент между фильтратом и межклеточной жидкостью. Поэтому вода оставляет фильтрат в области нисходящего колена, чем обеспечивается здесь реабсорбция около 15% объема первичной мочи. Кроме того, в формировании осмолярности фильтрата петли нефрона определенное значение принадлежит моче, которая может сюда попасть при повышении его концентрации в паренхиме почки.
В связи с выходом воды осмотическое давление мочи постепенно растет и достигает своего максимума в области поворота петли нефрона. Гиперосмотические моча поднимается по восходящему отдела, где, как указывалось выше, теряет Na + и С1-, которые выводятся благодаря активному функционированию транспортных систем. Поэтому в дистальные извитые канальцы фильтрат поступает даже гипоосмотическими (около 100-200 мосм / л). Таким образом, в нисходящем колене происходит процесс концентрирования мочи, а в восходящем - ее разведения.
Особенности функционирования отдельных нефронов во многом зависят от длины петли нефрона и выраженности нисходящего и восходящего отделов. Чем дольше петля (юкстамедулярни нефроны), то более выраженные процессы концентрации мочи.
В дистальные извитые канальцы и собирательные трубочки чаще поступает около 15% объема первичного фильтрата. Но в конечной моче, как правило, остается лишь 1% первичного фильтрата. В первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется (облигатная реабсорбция). В дистальных отделах реабсорбция регулируется с учетом потребностей организма: вода, поступившая сюда, может задерживаться в организме или выводиться с мочой (факультативная реабсорбция). Регулюетеся она гормонами, образование которых зависит от водного и ионного состояния организма.

Почки в человеческом теле выполняют ряд функций: это и регуляция объема крови и межклеточной жидкости, и удаление продуктов распада, и стабилизация кислотно-щелочного баланса, и регуляция водно-солевого равновесия и так далее. Все эти задачи решаются благодаря мочеобразованию. Канальцевая реабсорбция – один из этапов этого процесса.

Канальцевая реабсорбция

За сутки почки пропускают до 180 л первичной мочи. Эта жидкость из тела не выводится: так называемый фильтрат проходит сквозь канальцы, где практически вся жидкость всасывается, а необходимые для жизнедеятельности вещества – аминокислоты, микроэлементы, витамины, возвращаются в кровь. Продукты распада и обмена удаляются со вторичной мочой. Объем ее намного меньше – около 1,5 л за сутки.

Эффективность почки как органа во многом определяется эффективностью канальцевой реабсорбции. Чтобы представить себе механизм процесса, необходимо разобраться в строении – почечной единицы.

Строение нефрона

«Рабочая» клетка почки состоит из следующих частей.

  • Почечное тельце – клубочковая капсула, внутри расположены капилляры.
  • Проксимальный извитый каналец.
  • Петля Генле – складывается из нисходящей и восходящей части. Тонкая нисходящая располагается в мозговом веществе, изгибается под 180 градусов с тем, чтобы подняться в корковое вещество до уровня клубочка. Эта часть формирует восходящую тонкую и толстую части.
  • Дистальный извитый каналец.
  • Конечный отдел – короткий фрагмент, соединенный с собирательной трубкой.
  • Собирательная трубка – размещается в мозговом веществе, отводит вторичную мочу в почечную лоханку.

Общий принцип размещения таков: в корковом веществе размещаются почечные клубочки, проксимальный и дистальный канальцы, в мозговом – нисходящие и толстые восходящие части и собирательные трубки. Во внутреннем мозговом веществе остаются тонкие отделы, собирательные трубки.
На видео строение нефрона:

Механизм реабсорбции

Для осуществления канальцевой реабсорбции задействуются молекулярные механизмы, аналогичные перемещению молекул через плазматические мембраны: диффузия, эндоцитоз, пассивный и активный транспорт и так далее. Самый значимый – активный и пассивный транспорт.

Активный – проводится против электрохимического градиента. Для его реализации требуется энергия и специальные транспортные системы.

Рассматривают 2 вида активного транспорта:

  • Первично-активный – в ход идет энергия, выделяющаяся при расщеплении аденозинтрифосфорной кислоты. Таким образом перемещаются, например, ионы натрия, кальция, калия, водорода.
  • Вторично-активный – на перенос энергия не тратится. Движущей силой выступает разница в концентрации натрия в цитоплазме и просвете канальца.Переносчик обязательно включает в себя ион натрия. Таким способом через мембрану проходит глюкоза и аминокислоты. Разница в количестве натрия – меньше в цитоплазме, чем снаружи, объясняется выводом натрия в межклеточную жидкость с участием АТФ.

После преодоления мембраны комплекс расщепляется на переносчик – специальный белок, ион натрия и глюкозу. Переносчик возвращается в клетку, где готов присоединить следующий ион металла. Глюкоза же из межклеточной жидкости следует в капилляры и возвращается в кровоток. Реабсорбируется глюкоза только в проксимальном отделе, поскольку лишь здесь формируется требуемый переносчик.

Аминокислоты всасываются по аналогичной схеме. А вот процесс реабсорбции белка сложнее: белок поглощается путем пиноцитоза – захвата жидкости клеточной поверхностью, в клетке распадается на аминокислоты, а затем следует в межклеточную жидкость.

Пассивный транспорт – всасывание производится по электрохимическому градиенту и в поддержке не нуждается: например, всасывание ионов хлора в дистальном канальце. Возможно перемещение по концентрационному, электрохимическому, осмотическому градиентам.

На деле реабсорбция производится по схемам, включающим самые разные способы транспортировки. Причем в зависимости от участка нефрона абсорбироваться вещества могут по-разному или не поглощаться вовсе.

Например, вода усваивается в любом отделе нефрона, но разными методами:

  • около 40–45% воды всасывается в проксимальных канальцах по осмотическому механизму – вслед за ионами;
  • 25–28% воды поглощается в петле Генле по поворотно-протипоточному механизму;
  • в дистальных извитых канальцах поглощается до 25% воды. Причем если в двух предыдущих отделах поглощение воды производится вне зависимости от водной нагрузки, то в дистальных процесс регулируется: вода может выводиться со вторичной мочой или удерживаться.

Объем вторичной мочи достигает всего лишь 1% от первичного объема.
На видео процесс реабсорбции:

Движение реабсорбируемого вещества


Различают 2 метода перемещения реабсорбируемого вещества в межклеточную жидкость:

  • парацеллюрный – переход производится через одну мембрану между двумя плотно соединенными клетками. Это, например, диффузия, или перенос с растворителем, то есть, пассивный транспорт;
  • трансцеллюрный – «через клетку». Вещество преодолевает 2 мембраны: люминальную или апикальную, которая отделяет фильтрат в просвете канальца от клеточной цитоплазмы, и базолатеральную, выступающую барьером между интерстициальной жидкостью и цитоплазмой. Хотя бы один переход реализуется по механизму активного транспорта.

Виды

В разных отделах нефрона реализуются разные методы реабсорбции. Поэтому на практике часто используют разделение по особенностям работы:

  • проксимальный отдел – извитая часть проксимального канальца;
  • тонкий – части петли Генле: тонкая восходящая и нисходящая;
  • дистальный – дистальный извитый каналец, соединяющий и толстая восходящая часть петли Генле.

Проксимальная

Здесь поглощается до 2/3 воды, а также глюкоза, аминокислоты, белки, витамины, большое количество ионов кальция, калия, натрия, магния, хлора. Проксимальный каналец – основной поставщик глюкозы, аминокислот и белков в кровь, так что этот этап является обязательным и независим от нагрузки.

Схемы реабсорбции применяются разные, что определяется видом всасываемого вещества.

Глюкоза в проксимальном канальце поглощается практически полностью. Из просвета канальца в цитоплазму она следует через люминальную мембрану посредством контртранспорта. Это вторичный активный транспорт, для которого нужна энергия. Используется та, что выделяется при перемещении иона натрия по электрохимическому градиенту. Затем глюкоза проходит сквозь базолатеральную мембрану методом диффузии: глюкоза накапливается в клетке, что обеспечивает разницу в концентрации.

Энергия нужна при переходе сквозь люминальную мембрану, перенос через вторую мембрану энергетических затрат не требует. Соответственно, главным фактором поглощения глюкозы оказывается первично-активный транспорт натрия.

По такой же схеме реабсорбируются аминокислоты, сульфат, неорганический фосфат кальция, питательные органические вещества.

Низкомолекулярные белки оказываются в клетке посредством пиноцитоза и в клетке распадаются на аминокислоты и дипептиды. Этот механизм не обеспечивает 100% всасывания: часть белка остается в крови, а часть удаляется с мочой – до 20 г в сутки.

Слабые органические кислоты и слабые основания из-за низкой степени диссоциации реабсорбируются методом неионной диффузии. Вещества растворяются в липидном матриксе и поглощаются по концентрационному градиенту. Всасывание зависит от уровня pH: при его уменьшении диссоциация кислоты падает, а диссоциация оснований повышается. При высоком уровне pH увеличивается диссоциация кислот.

Эта особенность нашла применение при выводе ядовитых веществ: при отравлении в кровь вводят препараты, защелачивающие ее, что увеличивает степень диссоциации кислот и помогает вывести их с мочой.

Петля Генле

Если в проксимальном канальце ионы металлов и вода реабсорбируются практически в одинаковых долях, то в петле Генле всасывается в основном натрий и хлор. Воды же поглощается от 10 до 25%.

В петле Генле реализуется поворотно-протипоточный механизм, основанный на особенности расположения нисходящей и восходящей части. Нисходящая часть не поглощает натрий и хлор, но остается проницаемой для воды. Восходящая всасывает ионы, но для воды оказывается непроницаемой. В итоге всасывание хлорида натрия восходящей частью определяет степень поглощения воды нисходящей частью.

Первичный фильтрат попадает в начальную часть нисходящей петли, где осмотическое давление ниже по сравнению с давлением межклеточной жидкости. Моча спускается по петле, отдавая воду, но сохраняя ионы натрия и хлора.

Поскольку вода выводится, осмотическое давление в фильтрате растет и достигает максимального значения в поворотной точке. Затем моча следует по восходящему участку, сохраняя воду, но теряя ионы натрия и хлора. В дистальный каналец моча попадает гипоосмотическая – до 100–200 мосм/л.

По сути, в нисходящем отделе петли Генле моча концентрируется, а в восходящей – разводится.

На видео строение петли Гентле:

Дистальная

Дистальный каналец слабо пропускает воду, а органические вещества здесь вовсе не всасываются. В этом отделе производится дальнейшее разведение. В дистальный каналец попадает около 15% первичной мочи, а выводится около 1%.

По мере перемещения по дистальному канальцу она становится все более гиперосмотичной, поскольку здесь поглощаются в основном ионы и частично вода – не более 10%. Разведение продолжается в собирательных трубках, где и формируется конечная моча.

Особенностью работы этого сегмента является возможность регулировки процесса всасывания воды и ионов натрия. Для воды регулятором является антидиуретический гормон, а для натрия – альдостерон.

Норма

Для оценки функциональности почки используются различные параметры: биохимический состав крови и мочи, величина концентрационной способности, а также парциальные показатели. К последним и относят и показатели канальцевой реабсорбции.

Скорость клубочковой фильтрации – указывает на выделительные способности органа, это скорость фильтрации первичной мочи, не содержащей белок, через клубочковый фильтр.

Канальцевая реабсорбция указывает на всасывающие способности. Обе эти величины не постоянны и изменяются в течение суток.

Норма СКФ – 90–140 мл/мин. Наиболее высок ее показатель днем, снижается к вечеру, а утром находится на самом низком уровне. При физической нагрузке, потрясениях, почечной или сердечной недостаточности и других недугах СКФ падает. Может увеличиваться на начальных стадиях сахарного диабета и при гипертонии.

Канальцевая реабсорбция не измеряется непосредственно, а рассчитывается как разность между СКФ и минутным диурезом по формуле:

Р = (СКФ – Д) x 100 / СКФ, где,

  • СКФ – скорость клубочковой фильтрации;
  • Д – минутный диурез;
  • Р – канальцевая реабсорбция.

При снижении объема крови – операция, потеря крови, наблюдается повышение канальцевой реабсорбции в сторону роста. На фоне приема диуретиков, при некоторых почечных недугах – уменьшается.

Нормой для канальцевой реабсорбции является 95–99%. Отсюда и столь большая разница между объемом первичной мочи – до 180 л, и объемом вторичной – 1–1,5 л.

Для получения этих величин прибегают к пробе Реберга. С ее помощью вычисляют клиренс – коэффициент очищения эндогенного креатинина.По этому показателю вычисляют СКФ и величину канальцевой реабсорбции.

Пациент удерживается в лежачем положении на протяжении 1 часа. За это время собирается моча. Анализ проводится натощак.

Через полчаса из вены берут кровь.

Затем в моче и крови находят количество креатинина и вычисляют СКФ по формуле:

СКФ = М x Д / П, где

  • М – уровень креатинина в моче;
  • П – уровень вещества в плазме
  • Д – минутный объем мочи. Рассчитывается делением объема на время выделения.

По данным можно классифицировать степень повреждения почки:

  • Уменьшение скорости фильтрации до 40 мл/мин является признаком почечной недостаточности.
  • Уменьшение СКФ до 5–15 мл/мин свидетельствует о терминальной стадии недуга.
  • Уменьшение КР обычно следует после водной нагрузки.
  • Рост КР связан с уменьшением объема крови. Причиной может быть потеря крови, а также нефриты – при таком недуге повреждается клубочковый аппарат.

Нарушение канальцевой реабсорбции

Регуляция канальцевой реабсорбции

Кровообращение в почках выступает процессом относительно автономным. При изменениях АД от 90 до 190 мм. рт. ст. давление в почечных капиллярах удерживается на обычном уровне. Объясняется такая стабильность разницей в диаметре между приносящими и выносящими кровеносными сосудами.

Выделяют два наиболее значимых метода: миогенная ауторегуляция и гуморальная.

Миогенная – при росте АД стенки приносящих артериол сокращаются, то есть, в орган поступает меньший объем крови и давление падает. Сужение чаще всего вызывает ангиотензин II, таким же образом воздействуют тромбоксаны и лейкотриены. Сосудорасширяющими веществами выступают ацетилхолин, дофамин и так далее. В результате их действия нормализуется давление в клубочковых капиллярах с тем, чтобы удерживать нормальный уровень СКФ.

Гуморальная – то есть, при помощи гормонов. По сути, главным показателем канальцевой реабсорбции выступает уровень всасывания воды. Процесс этот можно разделить на 2 этапа: обязательный – тот, что проводится в проксимальных канальцах и независим от водной нагрузки, и зависимый – реализуется в дистальных канальцах и собирательных трубочках. Этот этап регулируется гормонами.

Главный среди них – вазопрессин, антидиуретический гормон. Он сохраняет воду, то есть, способствует задержке жидкости. Синтезируется гормон в ядрах гипоталамуса, перемещается в нейрогипофиз, а оттуда попадает в кровоток. В дистальных отделах имеются рецепторы к АДГ. Взаимодействие вазопрессина с рецепторами приводит к улучшению проницаемости мембран для воды, благодаря чему она поглощается лучше. При этом АДГ не только увеличивает проницаемость, но и определяет уровень проницаемости.

За счет разницы давлений в паренхиме и дистальном канальце вода из фильтрата остается в теле. Но на фоне низкой всасываемости ионов натрия диурез может оставаться высоким.

Всасывание ионов натрия регламентирует альдостерон – , а также натрийуретический гормон.

Альдестерон способствует канальцевой реабсорбции ионов и образуется при снижении уровня ионов натрия в плазме. Гормон регулирует создание всех требуемых для переноса натрия механизмов: канала апикальной мембраны, переносчика, составляющих натрий-калиевого насоса.

Особенно сильно его воздействие на участке собирательных трубочек. «Работает» гормон как в почках, так и в железах, и в ЖКТ, улучшая всасывание натрия. Также альдостерон регулирует чувствительность рецепторов к АДГ.

Альдостерон появляется и по другой причине. При снижении АД синтезируется ренин – вещество, контролирующее тонус сосудов. Под влиянием ренина аг-глобулин из крови трансформируется в ангиотензин I, а затем в ангиотензин II. Последний выступает сильнейшим сосудосуживающим веществом. Кроме того, он запускает выработку альдостерона, обуславливающего реабсорбцию ионов натрия, что вызывает задержку воды. Этот механизм – задержка воды и сужение сосудов, создает оптимальное АД и нормализует кровоток.

Натрийуретический гормон образуется в предсердии при его растяжении. Оказавшись в почках, вещество уменьшает реабсорбцию ионов натрия и воды. При этом количество воды, которое попадает во вторичную мочу увеличивается, что уменьшает общий объем крови, то есть, растяжение предсердий исчезает.

Кроме того, на уровень канальцевой реабсорбции оказывают воздействие и другие гормоны:

  • паратгормон – улучшает всасывание кальция;
  • тиреокальцийтонин – снижает уровень реабсорбции ионов этого металла;
  • адреналин – его влияние зависит от дозы: при малом количестве адреналин снижает СКФ фильтрацию, в большой дозе – здесь канальцевая реабсорбция повышена;
  • тироксин и соматропный гормон – усиливают диурез;
  • инсулин – улучшает поглощение ионов калия.

Механизм влияния разный. Так, пролактин повышает проницаемость клеточной мембраны для воды, а паратирин изменяет осмотический градиент интерстиция, тем самым влияя на осмотический транспорт воды.

Канальцевая реабсорбция – механизм, обуславливающий возвращение воды, микроэлементов и питательных веществ в кровь. Осуществляется возврат — реабсорбция, на всех участках нефрона, но по разным схемам.