Видимое движение планет происходит. Солнечная система. Видимые движения небесных тел: законы движения планет Движение планет относительно солнца

Еще в стародавние времена ученые мужи начали понимать, что не Солнце вращается вокруг нашей планеты, а все происходит с точностью наоборот. Точку в этом спорном для человечества факте поставил Николай Коперник. Польский астроном создал свою гелиоцентрическую систему, в которой убедительно доказал, что Земля не является центром Вселенной, а все планеты, по его твердому убеждению, вращаются по орбитам вокруг Солнца. Работа польского ученого «О вращении небесных сфер», была издана в немецком Нюрнберге в 1543 году.

Представления о том, как расположены планеты на небосводе первым в своем трактате «Великое математическое построение по астрономии», высказал древнегреческий астроном Птолемей. Он первым предположил, что они совершают свои движения по кругу. Но Птолемей ошибочно считал, что все планеты, а также Луна и Солнце движутся вокруг Земли. До работы Коперника его трактат считался общепринятым как в арабском, так и западном мире.

От Браге до Кеплера

После смерти Коперника его труды продолжил датчанин Тихо Браге. Астроном, являющийся весьма состоятельным человеком, оборудовал принадлежащий ему остров, внушительными бронзовыми кругами, на которые наносил результаты наблюдения за небесными телами. Результаты, полученные Браге, помогли в исследовании математику Иоганну Кеплеру. Движение планет Солнечной системы именно немец систематизировал и вывел три своих знаменитых закона.

От Кеплера до Ньютона

Кеплер впервые доказал, что все 6 известных к тому времени планет двигаются вокруг Солнца не по кругу, а по эллипсам. Англичанин Исаак Ньютон, открыв закон всемирного тяготения, существенно продвинул представления человечества об эллиптических орбитах небесных тел. Его объяснения, что приливы и отливы на Земле происходят под влиянием Луны, оказались убедительными для научного мира.

Вокруг Солнца

Сравнительные размеры крупнейших спутников Солнечной системы и планет Земной группы.

Срок, за который планеты совершают полный оборот вокруг Солнца, естественно различный. У Меркурия, самой ближней к звезде, он составляет 88 земных суток. Наша Земля проходит цикл за 365 дней и 6 часов. Самая крупная в Солнечной системе планета Юпитер завершает свой оборот за 11,9 земных лет. Ну а у Плутона, — наиболее удаленной от Солнца планеты оборот и вовсе составляет 247,7 года.

Следует также учесть, что все планеты в нашей Солнечной системе движутся, не вокруг светила, а вокруг так называемого центра масс. Каждая при этом, вращаясь вокруг своей оси, слегка раскачиваются (подобно юле). К тому же и сама ось может ненамного смещаться.

Общее представление о строении Солнечной системы вы получили еще в курсе природоведения. Теперь вам предстоит более глубоко изучить строение Солнечной системы, и начнем с описания и анализа наблюдаемого движения планет. Невооруженным глазом можно увидеть пять планет - Меркурий, Венеру, Марс. Юпитер и Сатурн, Планету по внешнему виду нелегко отличить от звезды, тем более что не всегда она бывает значительно ярче ее. Планеты относятся к числу тех светил, которые не только участвуют в суточном вращении небесной сферы, но еще и смещаются (иногда незаметно) на фоне зодиакальных созвездий. С этой особенностью планет связано само слово «планета», которым древние греки называли «блуждающие* светила. Чем лучше вы будете знать звездное небо, тем скорее обнаружите на нем планеты как «лишние» светила в созвездиях. В 8-кратный бинокль (а лучше телескоп!) можно заметить, что Венера, Юпитер, Сатурн имеют диски, в отличие от звезд, которые в оптические инструменты видны как точечные объекты.
Если проследить за перемещением какой-нибудь планеты, например Марса, ежемесячно отмечая его положение на звездной карте, то может выявиться главная особенность видимого движения планеты: планета описывает на фоне звездного неба петлю (рис. 1).
Петлеобразное движение планет долгое время оставалось загадочным и, как вы скоро узнаете, нашло простое объяснение в учении Коперника.

Рис. 1. Видимое движение планеты. Такую петлю описал на фоне звездного неба Марс с ноября 1979 г. по июль 1980 г. (римские цифры означают первые числа месяца).


2. Конфигурации планет

Планеты, орбиты которых расположены в н у т р и земной орбиты, называются н и ж н и м и , а планеты, орбиты которых расположены
в н е земной орбиты, - в е р х н и м и . Характерные взаимные расположения планет относительно Солнца и Земли называются
к о н ф и г у р а ц и я м и планет
. Конфигурации нижних и верхних планет различны (рис. 2 и рис 3). У нижних планет это с о е д и н е н и я (верхнее и нижнее ) и э л о н г а ц и и (восточная и западная ; это наибольшие угловые удаления планеты от Солнца). У верхних планет - к в а д р а т у р ы (восточная и западная: слово «квадратура» означает «четверть круга»), с о е д и н е н и е и п р о т и в о с т о я н и е .
Видимое движение нижних планет напоминает колебательное движение около Солнца. Нижние планеты лучше всего наблюдать вблизи элонгации (наибольшая элонгация Меркурия - 28°, а Венеры - 48
° ). С Земли в это время видно не все освещенное Солнцем полушарие планеты, а лишь часть его (ф а з а планеты). При восточной элонгации планета видна на западе вскоре после захода Солнца, при западной - на востоке незадолго перед восходом Солнца.
Верхние планеты лучше всего видны вблизи противостояний, когда к Земле обращено все освещенное Солнцем полушарие планеты.

.

Все космогонические гипотезы можно разделить на несколько групп. Согласно одной из них Солнце и все тела Солнечной системы: планеты, спутники, астероиды, кометы и метеорные тела - образовались из единого газовопылевого, или пылевого облака. Согласно второй Солнце и его семейство имеют различное происхождение, так что Солнце образовалось из одного газовопылевого облака (туманности, глобулы), а остальные небесные тела Солнечной системы - из другого облака, которое было захвачено каким-то, не совсем понятным, образом Солнцем на свою орбиту и разделилось каким-то, еще более непонятным образом на множество самых различных тел (планет, их спутников, астероидов, комет и метеорных тел), имеющих самые различные характеристики: массу, плотность, эксцентриситет, направление обращения по орбите и направление вращения вокруг своей оси, наклонение орбиты к плоскости экватора Солнца (или эклиптики) и наклон плоскости экватора к плоскости своей орбиты.
Девять больших планет обращаются вокруг Солнца по эллипсам (мало отличающимся от окружностей) почти в одной плоскости. В порядке удаления от Солнца - это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон . Кроме них в Солнечной системе множество малых планет (астероидов), большинство которых движется между орбитами Марса и Юпитера. Пространство между планетами заполнено крайне разреженным газом и космической пылью. Его пронизывают электромагнитные излучения.
Солнце в 109 раз больше Земли по диаметру и примерно в 333 000 раз массивнее Земли . Масса всех планет составляет всего лишь около 0,1% от массы Солнца, поэтому оно силой своего притяжения управляет движением всех членов Солнечной системы.

Конфигурация и условия видимости планет

Конфигурациями планет называют некоторые характернее взаимные расположения планет, Земли и Солнца.
Условия видимости планет с Земли резко различаются для планет внутренних (Венера и Меркурий), орбиты которых лежат внутри земной орбиты, и для планет внешних (все остальные).
Внутренняя планета может оказаться между Землей и Солнцем или за Солнцем. В таких положениях планета невидима, так как теряется в лучах Солнца. Эти положения называются соединениями планеты с Солнцем. В нижнем соединении планета ближе всего к Земле, а в верхнем соединении она от нас дальше всего.

Синодические периоды обращения планет и их связь с сидерическими периодами

Период обращения планет вокруг Солнца по отношению к звездам называется звездным или сидерическим периодом.
Чем ближе планета к Солнцу, тем больше ее линейная и угловая скорости и короче звездный период обращения вокруг Солнца.
Однако из непосредственных наблюдений определяют не сидерический период обращения планеты, а промежуток времени, протекающий между ее двумя последовательными одноименными конфигурациями, например между двумя последовательными соединениями (противостояниями). Этот период называется синодическим периодом обращения. Определив из наблюдений синодические периоды, путем вычислений находят звездные периоды обращения планет.
Синодический период внешней планеты - это промежуток времени, по истечении которого Земля обгоняет планету на 360° при их движении вокруг Солнца.

Законы Кеплера

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому ученому Иоганну Кеплеру (1571 -1630). В начале XVII в. Кеплер, изучая обращение Марса вокруг Солнца, установил три закона движения планет.

Первый закон Кеплера . Каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон площадей). Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади.

Третий закон Кеплера . Квадраты звездных периодов обращения планет относятся как кубы больших полуосей их орбит.

Среднее расстояние всех планет от Солнца в астрономических единицах можно вычислить, используя третий закон Кеплера. Определив среднее расстояние Земли от Солнца (т. е. значение 1 а.е.) в километрах, можно найти в этих единицах расстояния до всех планет Солнечной системы.Большая полуось земной орбиты принята за астрономическую единицу расстояний (=1 a.e.)
Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения .

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя .

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Задача . Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

Дано
РЕШЕНИЕ

Большую полуось орбиты можно определить из третьего закона Кеплера:
,
а звездный период - из соотношения между сидерическим и синодическим периодами:
,

- ?

Размер и форма Земли

На фотоснимках, сделанных из космоса, Земля выглядит как шар, освещенный Солнцем.
Точный ответ о форме и размере Земли дают градусные измерения , т. е. измерения в километрах длины дуги в 1° в разных местах на поверхности Земли. Градусные измерения показали, что длина 1° дуги меридиана в километрах в полярной области наибольшая (111,7 км), а на экваторе наименьшая (110,6 км). Следовательно, на экваторе кривизна поверхности Земли больше, чем у полюсов, а это говорит о том, что Земля не является шаром. Экваториальный радиус Земли больше полярного на 21,4 км. Поэтому Земля (как и другие планеты) вследствие вращения сжата у полюсов.
Шар, равновеликий нашей планете, имеет радиус, равный 6370 км. Это значение принято считать радиусом Земли.
Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом.

Масса и плотность Земли

Закон всемирного тяготения позволяет определить одну из важнейших характеристик небесных тел - массу, в частности массу нашей планеты. Действительно, исходя из закона всемирного тяготения, ускорение свободного падения g=(G*M)/r 2 . Следовательно, если известны значения ускорения свободного падения, гравитационной постоянной и радиуса Земли, то можно определить ее массу.
Подставив в указанную формулу значение g = 9,8 м/с 2 , G =6,67 * 10 -11 Н * м 2 /кг 2 ,

R =6370 км, найдем, что масса Земли М=6 x 10 24 кг. Зная массу и объем Земли, можно вычислить ее среднюю плотность.

Методика проведения 7 урока
"Видимое движение и конфигурации планет"

Цель урока: формирование понятий о космических и небесных явлениях, связанных с обращением планет вокруг Солнца и видимым движением других космических тел.

Задачи обучения:
Общеобразовательные
:

1) систематизация понятий о небесных явлениях: видимом движении и конфигурациях планет, наблюдающихся в результате взаимного перемещения и расположения небесных светил относительно земного наблюдателя;

2) подробное рассмотрение причин и характеристик космического явления обращения планет вокруг Солнца и его следствий - небесных явлений: видимого движения внутренних и внешних планет на небесной сфере и их конфигураций (верхнего и нижнего соединений, элонгаций, противостояний, квадратур).

Воспитательные: формирование научного мировоззрения в ходе знакомства с историей человеческого познания и объяснения повседневно наблюдаемых небесных явлений; борьба с религиозными предрассудками.

Развивающие: формирование умений: формирование умений выполнять упражнения на применение основных формул сферической астрономии при решении соответствующих расчетных задач и применять подвижную карту звездного неба, звездные атласы, справочники, Астрономический календарь для определения положения и условий видимости небесных светил и протекания небесных явлений.

Ученики должны знать :

Причины и основные характеристики небесных явлений, порожденных обращением планет вокруг Солнца (видимое движение внутренних и внешних планет на небесной сфере и их конфигурации);
- основы классификации космических и небесных явлений и соответствующие геометрические схемы;
- понятия сферической астрономии: конфигурации планет (верхнее и нижнее соединения, элонгации, противостояния, квадратуры); сидерический и синодический периоды обращения и вращения планет;
- формулы, выражающие связь между сидерическими и синодическими периодами обращения и вращения планет;
- астрономические величины: сидерические и синодические периоды обращения и вращения планет.

Ученики должны уметь :

Использовать обобщенный план для изучения космических и небесных явлений;
- использовать Астрономические календари, справочники и подвижную карту звездного неба для определения условий наступления и протекания данных небесных явлений;
- решать задачи, связанные с расчетом положения и условий видимости планет с учетом формул, выражающих связь сидерических и синодических периодов их обращения и вращения.

Наглядные пособия и демонстрации:

Кинофильмы и кинофрагменты: "Видимое и истинное движение планет", "Петля Марса".
Фрагменты слайд-фильма "Строение Солнечной системы".
Диафильм:
"Видимое движение небесных светил".
Таблицы
: "Солнечная система".
Приборы и инструменты
: подвижные карты звездного неба; Астрономический календарь на данный год; демонстрационная модель планетной системы; карта движения планет.

Задание на дом:

1) Изучить материала учебников:

- Б.А. Воронцов-Вельяминова : §§ 8, 10; упражнение 7.
- Е.П. Левитана : §§ 7, 8; вопросы-задания.
- А.В. Засова, Э.В. Кононовича : §§ 7, 8; упражнение 8.7 (1-3).

2) Выполнить задания из сборника задач Воронцова-Вельяминова Б.А. : 127, 134; 138.

План урока

Этапы урока

Методы изложения

Время, мин

Проверка знаний и актуализация

Фронтальный опрос, беседа

Формирование понятий о космическом явления обращения планет вокруг Солнца и его следствиях - небесных явлениях: видимого движения планет на небесной сфере и их конфигурациях

Лекция, беседа

Решение задач

Работа у доски, самостоятельное решение задач в тетради

15-17

Обобщение пройденного материала, подведение итогов урока, домашнее задание

Методика изложения материала

В начале урока традиционно проводится проверка знаний, приобретенных на прошлом и предыдущих уроках и в ходе фронтального опроса актуализируется предназначенный к изучению материал. Часть учеников работает у доски, а часть выполняет письменные задания, решая задачи, аналогичные основным задачам упражнений 1-5. Дополнительными вопросами являются:

1. Какие небесные явления происходят в результате: вращения Земли вокруг своей оси; обращения Луны вокруг Земли; обращения Земли вокруг Солнца.

2. Дайте описание небесных явлений, порожденных обращением Луны вокруг Земли и планет вокруг Солнца (солнечных и лунных затмений; покрытий звезд и планет Луной; прохождений Венеры и Меркурия по диску Солнца; явлений в системах планет-гигантов; изменения блеска затменно-переменных звезд). Ответы строятся на основе обобщенного плана для изучения космических и небесных явлений с использованием соответствующих геометрических схем.

1. Укажите причины небесных явлений, отмечая напротив каждого варианта вопроса верный номер варианта ответа, например: А1; Б2; В3 и т.д.

Небесные явления

Космические явления

А. Видимое вращение звездного неба
Б.
Смена времен года
В.
Смена дня и ночи
Г
. Смена фаз Луны
Д.
Восход и заход небесных светил
Е.
Видимое движение Солнца по небу в течение дня
Ж.
Солнечные затмения
З.
Изменение высоты Солнца над горизонтом в течение года
И.
Лунные затмения

1) вращения Земли вокруг своей оси;
2) вращения Луны вокруг Земли;
3) вращения Земли вокруг Солнца.

Правильные ответы :

А1; Б3; В1; Г2; Д1; Е1; Ж 2; З 3; И 2

2. Страут Е.К. : проверочные работы NN 3-4 темы "Практические основы астрономии" (преобразованные учителем в программированные задания).

На первом этапе урока учитель в форме лекции излагает материал о видимом движении и конфигурациях планет.

Характер видимого движения и условий видимости внутренних планет описывается с опорой на схему рис. 48. Сложный петлеобразный характер видимого движения внешних планет лучше всего объяснять с опорой на фрагмент "Видимое и истинное движение планет" или "Видимая петля Марса". В их отсутствие мы рекомендуем учителю построить на доске (а ученикам – в тетрадях) схему рис. 49, сопровождая каждый этап работы соответствующими пояснениями. Желательно сообщить учащимся, какие из планет они могут увидеть на небе в данное время года и объяснить им, как найти эти планеты среди созвездий.

Несовпадение продолжительности синодического и сидерического периодов обращения планет демонстрируют при помощи теллурия. Внутренняя планета совершает 1 оборот вокруг Солнца и возвращается к той же точке орбиты быстрее Земли, внешняя планета – медленнее Земли.

Видимое движение и конфигурации планет

Сложное видимое движение планет на небесной сфере обусловлено обращением планет Солнечной системы вокруг Солнца. Само слово "планета" в переводе с древнегреческого означает "блуждающая" или "бродяга".

Траектория движения небесного тела называется его орбитой . Скорости движения планет по орбитам убывают с удалением планет от Солнца.

По отношению к орбите и условиям видимости с Земли планеты разделяются на внутренние (Меркурий, Венера) и внешние (Марс, Юпитер, Сатурн, Уран, Нептун, Плутон).

Внешние планеты всегда повернуты к Земле стороной, освещаемой Солнцем. Внутренние планеты меняют свои фазы подобно Луне.

Плоскости орбит всех планет Солнечной системы (кроме Плутона) лежат вблизи плоскости эклиптики, отклоняясь от нее: Меркурий на 7њ , Венера на 3,5њ ; у других наклон еще меньше.

Характерные взаимные положения Солнца, Земли и планет называются конфигурациями. Одинаковые конфигурации планет происходят в разных точках их орбит, в разных созвездиях, в разное время года.

Конфигурации, при которых внутренняя планета, Земля и Солнце выстраиваются по одной линии, называются соединениями (рис. 48).

Рис. 48. Конфигурации планет:
Земля в верхнем соединении с Меркурием,
в нижнем соединении с Венерой и в противостоянии с Марсом

Если А - Земля, В - внутренняя планета, С - Солнце, небесное явление называется нижним соединением . В "идеальном" нижнем соединении происходит прохождение Меркурия или Венеры по диску Солнца.

Если А - Земля, В - Солнце, С - Меркурий или Венера, явление называется верхним соединением . В "идеальном" случае происходит покрытие Солнцем планеты, которое, конечно, не может наблюдаться из-за несравнимой разницы в блеске светил.

Для системы Земля - Луна - Солнце в нижнем соединении происходит новолуние, в верхнем соединении - полнолуние.

Предельный угол между Землей, Солнцем и внутренней планетой называется наибольшим удалением или элонгацией и равен: для Меркурия - от 17њ 30" до 27њ 45" ; для Венеры - до 48њ . Внутренние планеты могут наблюдаться только вблизи Солнца и только по утрам или вечерам, перед восходом или сразу после захода Солнца. Видимость Меркурия не превышает часа, видимость Венеры - 4 часов (рис. 49).

Конфигурация, при которой Солнце, Земля и внешняя планета выстраиваются на одной линии, называется: 1) если А - Солнце, В - Земля, С - внешняя планета - противостоянием ; 2) если А - Земля, В - Солнце, С - внешняя планета - соединением планеты с Солнцем (рис. 48).

Конфигурация, в которой Земля, Солнце и планета (Луна) образуют в пространстве прямоугольный треугольник называется квадратурой : восточной при расположении планеты в 90њ к востоку от Солнца и западной при расположении планеты в 90њ к западу от Солнца.

Видимое движение небесных светил целиком складывается из:

1) перемещения наблюдателя по поверхности Земли;
2) вращения Земли вокруг Солнца;
3) собственных движений небесных тел.

Для точных расчетов ученые учитывают движение Солнечной системы относительно ближайших звезд, вращение ее вокруг центра Галактики и движение самой Галактики.

Движение внутренних планет на небесной сфере сводится к их периодическому отдалению от Солнца вдоль эклиптики то к востоку, то к западу на угловое расстояние элонгации.

Движение внешних планет на небесной сфере носит более сложный петлеобразный характер. Скорость видимого движения планеты неравномерна, поскольку ее величина определяется векторной суммой собственных скоростей Земли и внешней планеты (рис. 50). Форма и размеры петли планеты зависит от скорости планеты по отношению к Земле и наклона планетной орбиты к эклиптике.

Сидерическим (звездным ) периодом обращения планеты называется промежуток времени Т , за который планета совершает один полный оборот вокруг Солнца по отношению к звездам.

Синодическим периодом обращения планеты называется промежуток времени S между двумя последовательными одноименными конфигурациями.

Для нижних (внутренних) планет: . Для верхних (внешних) планет: .

Продолжительность средних солнечных суток s для планет Солнечной системы зависит от сидерического периода их вращения вокруг своей оси t , направления вращения и сидерического периода обращения вокруг Солнца Т .

Для планет, обладающих прямым направлением вращения вокруг своей оси (тем же, в котором они движутся вокруг Солнца):

Для планет, обладающих обратным направлением вращения (Венера, Уран): .

Формулы связи синодического и сидерического периодов выводят по аналогии с движением часовых стрелок. Аналогией синодического периода S будет промежуток времени между совпадениями часовой и минутной стрелок, аналогией сидерических - периоды вращения часовой стрелки (Т 1 = 12ч) и минутной стрелки (Т 2 = 1ч). Стрелки встречаются вновь в разных местах циферблата. Их угловые скорости равны: ; . За синодический период времени часовая стрелка описывает дугу , минутная стрелка .

=> .

Ученики дополняют табл. 6 сведениями об изученных на уроке космических и небесных явлениях:

Космические явления

Обращение планет Солнечной системы вокруг Солнца

1. Видимое движение внутренних и внешних планет по небесной сфере.
2. Конфигурации планет
:
-
соединения: верхнее и нижнее;
- элонгации (наибольшие удаления);
- квадратуры: восточная, западная;
- противостояния.
3. Явления в системе Солнце – внутренняя планета:
- прохождение Меркурия и Венеры по диску Солнца.
- смена фаз внутренних планет (Меркурия и Венеры).
4. Явления в системах планет и их спутников:
- изменение положения спутника относительно диска планеты;
- прохождения спутников по диску планет;
- затмения спутников диском планет.
5. Покрытия звезд дисками планет (планетных тел).

В качестве дополнительного материала можно в общих чертах ознакомить учащихся с рядом атмосферных небесных явлений:

На основе законов геометрической оптики - законов преломления света можно объяснить ряд небесных явлений.

Рис. 52. Астрономическая рефракция

Астрономическая рефракция - явление преломления (искривления) световых лучей при прохождении через атмосферу, вызванное оптической неоднородностью атмосферного воздуха. Вследствие уменьшения плотности атмосферы с высотой искривленный луч света обращен выпуклостью в сторону зенита (рис. 52). Рефракция изменяет зенитное расстояние (высоту) светил по закону: r = a * tg z , где: z - зенитное расстояние, a = 60,25" - постоянная рефракции для земной атмосферы (при t = 0њ С, p = 760 мм. рт. ст.).

В зените рефракция минимальна - она возрастает по мере наклона к горизонту до 35" и сильно зависит от физических характеристик атмосферы: состава, плотности, давления, температуры. Вследствие рефракции истинная высота небесных светил всегда меньше их видимой высоты: рефракция "поднимает" изображения светил над их истинными положениями. Искажаются форма и угловые размеры светил: на восходе и закате близ горизонта "сплющиваются" диски Солнца и Луны, поскольку нижний край диска поднимается рефракцией сильнее верхнего (рис. 53).

Искажается показатель преломления света в зависимости от длины волны: при очень чистой атмосфере человек может увидеть на заходе или восходе Солнца редкий "зеленый луч". Поскольку расстояния до звезд несравнимо превосходят их размеры, можно считать звезды точечными источниками света, лучи которых распространяются в пространстве по параллельным прямым. Преломление лучей звездного света в атмосферных слоях (потоках) разной плотности вызывает мерцание звезд - неравномерные усиления и ослабления их блеска, сопровождающиеся изменениями их цвета ("игрой звезд").

Земная атмосфера рассеивает солнечный свет. Рассеяние света происходит на случайных микроскопических неоднородностях плотности воздуха, сгущениях и разрежениях размерами 10 -3 -10 -9 м.

Интенсивность рассеяния света обратно пропорциональна четвертой степени длины световой волны (закон Рэлея). Сильнее всего рассеиваются фиолетовые, синие и голубые лучи, слабее всего - оранжевые и красные.

Вследствие этого земное небо имеет днем голубой цвет: наблюдатель воспринимает рассеянный в атмосфере солнечный свет, спектр излучения которого сдвинут в сторону коротких волн. По той же причине далекие леса и горы кажутся нам голубыми и синими.

Диски Солнца и Луны на восходе и закате приобретают красный цвет: с приближением к горизонту удлиняется путь световых лучей, прошедших без рассеяния, спектр их сдвигается в сторону длинных волн. Обратите внимание на зори: вначале узенькая, кроваво-красная полоска утренней зари бледнеет, розовеет, наливается желтизной, а небо в зените из темного, почти черного становится густо-фиолетовым, потом сиреневым, синим и голубым, а вечером все происходит наоборот. Ночью на Земле никогда не бывает абсолютно темно: рассеянный в атмосфере свет звезд и давно зашедшего Солнца создает ничтожно малую освещенность в 0,0003 лк.

Продолжительность светового времени суток - дня всегда превышает промежуток времени от восхода до захода Солнца.

Рассеяние солнечных лучей в земной атмосфере порождает сумерки , плавный переход от светлого времени суток - дня к темному - ночи, и обратно. Сумерки возникают из-за подсвечивания верхних слоев атмосферы Солнцем, находящимся ниже линии горизонта. Продолжительность их определяется положением Солнца на эклиптике и географической широтой места.

Различают гражданские сумерки: период времени от захода Солнца (верхнего края солнечного диска) до его погружения на 6њ -7њ под горизонт; навигационные сумерки - до момента погружения Солнца под горизонт на 12њ и астрономические , - пока угол не составит 18њ . На высоких (± 59,5њ ) широтах Земли наблюдаются белые ночи - явление прямого перехода вечерних сумерек в утренние при отсутствии темного времени суток.
Сумеречные явления наблюдаются также в плотной атмосфере планеты Венера.
Ученики дополняют табл. 6 новыми сведениями:

Космические явления

Небесные явления, возникающие вследствие данных космических явлений

Атмосферные явления

1) Атмосферная рефракция:
- искажение небесных координат светил;
- необходимость поправки экваториальных координат небесных светил на рефракцию;
- искажение формы и угловых размеров небесных светил по высоте на восходе и закате;
- мерцание звезд;
- "зеленый луч".

2) Рассеяние света в атмосфере Земли :
- голубой цвет дневного неба;
- синий, сиреневый цвет вечернего (утреннего) неба;
- сумерки.
- продолжительность светового времени суток (дня) всегда превышает промежуток времени от восхода до захода Солнца;
- белые ночи; полярный день и полярная ночь на высоких широтах;
- свечение ночного неба;
- заря; красный цвет зари;
- покраснение дисков Солнца и Луны на восходе и закате.

Материал об условиях видимости планет и продолжительность видимости в различных конфигурациях лучше всего осознается учащимися при решении соответствующих задач с применением подвижных карт звездного неба:

Упражнение 6:

1. 28 ноября 2000 года Юпитер в противостоянии с Солнцем. В каком созвездии находится планета?

2. В каком созвездии находится Меркурий (Венера), если планета сейчас в верхнем (нижнем) соединении с Солнцем?

3. 21 июля 2001 года Меркурий в наибольшей западной элонгации. В каком созвездии в какое время суток и сколько времени можно наблюдать эту планету?

4. Марс в противостоянии виден в созвездии Весов. В каком созвездии находится в это время Солнце?

5. За 2 суток до новолуния, 24 ноября 2000 года Луна проходит в 3њ севернее Меркурия. В каком созвездии в какое время (утром или вечером) следует искать планету?

6. Какова продолжительность года на Марсе, если между двумя противостояниями проходит 780,1 d ?

7. Наиболее удобно наблюдать Меркурий вблизи его элонгаций. Почему? Как часто они повторяются, если год на Меркурии равен 58,6 d ?

8. Какова продолжительность сидерического периода вращения Юпитера вокруг Солнца, если он в 5 раз дальше от Солнца, нежели Земля? Через какие промежутки времени повторяются его противостояния?

9. Во сколько раз отличаются продолжительности года на Меркурии, Венере, Марсе?

10. Каковы условия видимости Земли с поверхности Луны? Орбиты спутника Венеры? С поверхности Марса?

11. Изготовление модели Солнечной системы на базе модели теллурия: для изучения условий видимости и движения планет вы можете усложнить модель, заставив вращаться вокруг "Солнца" и другие пластилиновые шарики - "планеты": Меркурий, Венеру, Марс, Юпитер, Сатурн.

12. Изготовление "линейной" модели Солнечной системы. Главным недостатком теллурия как модели Солнечной системы является несоответствие масштабов размеров космических тел и расстояний между ними. Мы предлагаем построить модель Солнечной системы, чтобы вы сами смогли увидеть и сопоставить размеры Солнца и планет с межпланетными расстояниями и размерами Солнечной системы в целом.

Выберем в качестве масштаба соотношение: 1 см размеров в нашей модели соответствует космическим расстояниям в 26 000 километров (табл. 4). Модели планет можно вылепить из разноцветного пластилина или вырезать их из раскрашенной бумаги и наклеить на картон.
Табл. 9
Размеры планет Солнечной системы

Названия планет

Размеры планет

Размеры планет в модели

Солнце

1 392 000 км

54 см 5 мм

Меркурий

4 900 км

2 мм

Венера

12 100 км

5 мм

Земля

12 756 км

5 мм

Марс

6 800 км

3 мм

Юпитер

142 000 км

6 см 5 мм

Сатурн

120 000 км

4 см 8 мм

Уран

50 000 км

2 см

Нептун

50 000 км

2 см

Плутон